ES的索引结构与算法解析

作者:京东物流 李洪吉

提到ES,大多数爱好者想到的都是搜索引擎,但是明确一点,ES不等同于搜索引擎。不管是谷歌、百度、必应、搜狗为代表的自然语言处理(NLP)、爬虫、网页处理、大数据处理的全文搜索引擎,还是有明确搜索目的的搜索行为,如各大电商网站、OA、站内搜索、视频网站的垂直搜索引擎,他们或多或少都使用到了ES。

​作为搜索引擎的一部分,ES自然具有速度快、结果准确、结果丰富等特点,那么ES是如何达到“搜索引擎”级别的查询效率呢?首先是索引,其次是压缩算法,接下来我们就一起了解下ES的索引结构和压缩算法

1 结构

1.1 Mysql

Mysql下的data目录存放的文件就是mysql相关数据,mysql文件夹对应的就是数据库mysql。

其中表columns_priv对应了3个文件:columns_priv.frm、columns_priv.MYD、columns_priv.MYI。

.frm:表结构;.MYD:myisam存储引擎原数据;.MYI:myisam存储引擎索引;.ibd:innodb存储引擎数据

ES的索引结构与算法解析

1.2 Elasticsearch

ES的索引结构与算法解析

ES的索引结构与算法解析

cfe为索引文,cfs 为数据文件,cfe文件保存Lucene各文件在.cfs文件的位置信息

cfs、cfe 在segment还很小的时候,将segment的所有文件都存在在cfs中,在cfs逐渐变大时,大小超过shard的10%,则会拆分为其他文件,如tim、dvd、fdt等文件

1.3 存储结构

倒排索引结构分为倒排表、词项字典、词项索引

ES的索引结构与算法解析

倒排表包含某个词项的所有id的数据存储了在.doc文件中

词项字典包含了index field的所有经过处理之后的词项数据,最终存储在.tim文件中

1.4 结构对比

我们以某商城的手机为例,左侧为es倒排索引结构,右侧为原始数据。左侧图示只是为了展示倒排索引结构,并不是说es中倒排表就是简单的数组

ES的索引结构与算法解析

以上面结构对比示例图为例,假如共有10亿条数据需要存储在ES中(上图右),分词后存储的倒排表(上图左)大概包含分词term以及对应的id数组等,在10亿条数据中,分词“小米”相关的数据有100万条,也就是说分词“小米”对应的数组Posting List长度是100万

id是int类型的有序主键,分词“小米”在数组Posting List中100万int类型数字总长度=100万✖每个int占4字节=400万Byte≈4MB。1个分词占4MB空间,假如10亿条数据有500万个分词,总空间=4MB✖500万=2千万MB,磁盘空间直接爆炸

2 算法

分词对应的数组Posting List实际就是一个个有序数组,而有序数值数组是比较容易进行压缩处理的,而且一般来说压缩效益也不错,如果能对其进行压缩是能够大大节约空间资源的

ES中倒排索引的压缩算法主要有FOR算法(Frame Of Reference)和RBM算法(RoaringBitMap)

2.1 FOR

FOR算法的核心思想是用减法来削减数值大小,从而达到降低空间存储。 假设V(n)表示数组中第n个字段的值,那么经过FOR算法压缩的数值V(n)=V(n)-V(n-1)。也就是说存储的是后一位减去前一位的差值。存储是也不再按照int来计算了,而是看这个数组的最大值需要占用多少bit来计算

ES的索引结构与算法解析

我们按照差值计算的方式来保存数据,初始值为1,2与1的差值为1,3与2的差值为1……最终我们就将原始Posting List数据转化为100万个1,每个1我们可以用1bit来记录,总空间=1bit✖100万=100万bit,相比原有400万Byte=3200bit,空间压缩了32倍

ES的索引结构与算法解析

在实际生产中,不可能出现一个term的Posting List是这种差值均为1的情况,所以我们以通用示例举例。假如原数据为[73,300,302,332,343,372],数组中6个数字占据总空间为24字节。按照差值方式记录,数组转化为[73,227,2,30,11,29],最大数字为227,大于2的7次方128,小于2的8次方256,所以每个数字可以使用8bit即1Byte来保存,占据总空间为1Byte*6 + 1Byte=7Byte

ES的索引结构与算法解析

在此基础上,我们将差值数组按照密集度划分为[73,227]和[2,30,11,29],其中[73,227]中最大值227介于2的7次方和2的8次方之间,所以用8bit=1Byte作为切割分段,[2,30,11,29]中最大数30介于2的4次方和2的5次方之间,所以用5bit作为切割分段。

数组[73,227]占据总空间为8bit✖2个=16bit=2Byte

数组[2,30,11,29]占据总空间为5bit✖4个=20bit=3Byte

为什么20bit=3Byte呢?因为8bit=1Byte,小于8bit也会占据1个字节空间,所以17bit到24bit均为3Byte

所以,最终占据总空间=1+2+1+3=7Byte

ES的索引结构与算法解析

疑问一:既然原数组[73,300,302,332,343,372]要按照密集度拆分为[73,227]和[2,30,11,29]两个数组,那为什么不继续往下拆分,直接拆分到每个数字是一个数组,这样使用bit记录时占据总空间会更少?

答:如果继续拆分数组,空间确实会使用更少,但是,之前我们提到搜索引擎速度快的方式有两种:高效的压缩算法和快速的编码解码速度,单个数字存储确实压缩了空间,但是我们无法再通过解码的方式将源数据还原

疑问二:为什么源数据使用差值记录占据6Byte,拆分数组后占据7Byte,拆分后占据空间不变,有时候甚至会变大,为什么?

答:数据量小的情况下确实会出现该情况,因为我们需要拆分数组并记录拆分数组的长度(如上面示例中的8bit和5bit),在原数据存储空间基础上还要存储拆分长度,所以数据量小的情况下会出现比直接存储占据空间大的情况。但是不管是搜索引擎还是Elasticsearch更多处理的是海量数据,数据量越多,差值数组拆分的方式节省空间越明显

2.2 RBM

我们已经了解了FOR压缩算法,算法核心是将PostingList按照差值密集度转化成两个差值数组。在这里我们要考虑一种情况就是:在大数据中,10亿条数据分词500万个,如果分词“小米”所在PostList比较分散且差值很大,此时使用FOR算法效果就会大打折扣。所以稀疏的数组,不适合使用FOR算法

ES的索引结构与算法解析

在这里我们以[1000,62101,131385,132052,191173,196658]为例,如果按照FOR算法,转化成的差值数组为[1000,61101,69284,667,59121,5485]密集度很低。我们采用RBM算法

源数据PostingList是由int类型组成的数组,int类型=4Byte=32bit,最大值=2的32次方-1=4294967295≈43亿。当数据较大且稀疏时,我们将32bit拆分为16bit和16bit,16bit最大值=65535,前16bit存放,后16bit存放余数,所以商和余数都不会超过65535.我们将源数组的值除以65536,得到的商和余数分别存放在前16bit和后16bit。

以数字196658为例,转化为2进制,前16位=3,后16位=50

ES的索引结构与算法解析

得到的结果以K-V存放。Key最大值为16bit,所以以short[]数组存放,Value以Container存放。

由于源数组为有序数组,所以按照高低16位转化后,商和余数都是从小到大排列

ES的索引结构与算法解析

通过看Container源码,我们可以看到Container有3种:ArrayContainer、BitmapContainer、RunContainer。

ES的索引结构与算法解析

  1. ArrayContainer本质为集合,所以随着数组中数量越多,占用空间越多,呈正向增长。

当数组种数量为4096时,占据总空间=4096个✖16bit(即2Byte)➗1024=8KB

当数组种数量为65536时,占据总空间=65536个✖16bit(即2Byte)➗1024=128KB

  1. BitmapContainer位图,核心就是将原有存储数值转化成该数值在哪个位置上存在

由于余数最大值为65535,所以我们需要65536位位图,数值是多少,在位图上对应的位置就是多少。数值等于4096,则位图上4096位值为1;数值等于65535,则位图上65535位值为1。每个位置上的数都占用8KB空间(8KB=65536bit)

  • RunContainer用法相对狭隘,这种类型是Lucene 5之后新增的类型,主要应用在连续数字的存储商,比如倒排表中存储的数组为 [1,2,3…100W] 这样的连续数组,如果使用RunContainer,只需存储开头和结尾两个数字:1和100W,即占用8个字节。这种存储方式的优缺点都很明显,它严重收到数字连续性的影响,连续的数字越多,它存储的效率就越高
  • 如果数组是如下形式 [1,2,3,4,5,100,101,102,999,1000,1001] 就会被拆分为三段:[1,5],[100,102],[999,1001]

至于每次存储采用什么容器,需要进行一下判定,比如ArrayContainer,当存储的元素少于4096个时,他会比BitmapContainer占用更少空间,而当大于4096个元素时,采用ArrayContainer所需要的空间就会大于8kb,那么采用BitmapContainer就会占用更少空间

ES的索引结构与算法解析

3 总结

ES在处理海量数据时通过其独到的结构和压缩算法,将索引效率尽可能的提升。虽然在实际业务处理中我们极少遇到海量数据处理的情况,但是通过了解ES的原理,能够帮我们开阔下视野,了解数字之美,算法之美。

原文链接:https://www.cnblogs.com/Jcloud/p/17348590.html

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:ES的索引结构与算法解析 - Python技术站

(0)
上一篇 2023年4月25日
下一篇 2023年4月25日

相关文章

  • IAAS云计算产品畅想-云主机的产品定位

    要研究某个产品的定位,就要先研究一下这个产品进入市场以后会影响了谁,被影响的产品产业,就是你的定位环境。 现例举一下公有云iaas服务影响了谁(按重要程度顺序): 1、企业IT 2、设备厂商 3、数据中心 4、VPS 5、虚拟主机 第一位的就是企业IT,在企业选择以租代购后,通过IAAS来进行部分业务所需基础资源的支撑。(不要认为这个是不可能的,随着云计算产…

    云计算 2023年4月12日
    00
  • Java实现Dbhelper支持大数据增删改

    下面就是Java实现Dbhelper支持大数据增删改的完整攻略: 简介 Dbhelper是一个Java的ORM框架,它的主要目的是简化数据库操作的代码量,同时提供了一些非常实用的功能,比如实体映射、事务、数据库连接池等。在处理大批量的数据时,Dbhelper可以有效地提高程序的效率。但是,在处理大批量数据时,Dbhelper也会遇到一些瓶颈,比如在插入、更新…

    云计算 2023年5月18日
    00
  • Python数据分析之 Matplotlib 饼图绘制

    Python数据分析之Matplotlib饼图绘制的攻略如下: Matplotlib 饼图绘制 1. 简介 Matplotlib 是一个 Python 的 2D 绘图库,提供了一整套与 Matlab 相似的命令API,十分适合交互式地进行制图。 饼图是 Matplotlib 中一种常用的图表类型,用于展示各类别的占比关系。下面我们将详细讲解如何使用 Matp…

    云计算 2023年5月18日
    00
  • 哥本哈根能效中心:阿里云用清洁的计算能力改变世界

    摘要: 在刚刚闭幕的二十国集团(G20)汉堡峰会上,气候变化再度成为20国首脑的焦点话题。 八年前,哥本哈根联合国气候变化大会上,与会各国就温室减排竭力磋商。八年后,联合国支持的哥本哈根能效中心撰文介绍了阿里云的绿色数据中心技术。 在刚刚闭幕的二十国集团(G20)汉堡峰会上,气候变化再度成为20国首脑的焦点话题。 八年前,哥本哈根联合国气候变化大会上,与会各…

    云计算 2023年4月13日
    00
  • 云计算安全扩展要求-(四)安全区域边界

    云计算安全扩展要求   四、安全区域边界 尽管云计算环境具有无边界性、分布式的特性,但每一个云数据中心的服务器仍然是局部规模化集中部署的。通过对每个云数据中心分别进行安全防护,可以实现云基础设施边界安全。通过在云计算服务的关键节点和服务入口处实施重点防护,可以实现从局部到整体的严密联防。   安全区域边界针对云计算环境物理网络边界和虚拟网络边界提出了安全控制…

    云计算 2023年4月11日
    00
  • Linux云计算-01_介绍以及Linux操作系统安装

    云计算(cloud computing)是分布式计算的一种,指的是通过网络“云”将巨大的数据计算处理程序分解成无数个小程序,然后,通过多部服务器组成的系统进行处理和分析这些小程序得到结果并返回给用户。云计算早期,简单地说,就是简单的分布式计算,解决任务分发,并进行计算结果的合并。因而,云计算又称为网格计算。通过这项技术,可以在很短的时间内(几秒钟)完成对数以…

    2023年4月9日
    00
  • 使用vCenter对ESXi主机进行补丁升级

    使用vCenter 对ESXi 主机进行补丁升级 背景说明:公司内部有许多ESXi主机需要进行补丁升级,记录一下通过vCenter对ESXi主机进行补丁升级的过程,也可以使用esxcli命令行方式。 vsphere版本:vCenter 6.7 和 ESXi 6.7 实操过程 1、查看ESXi主机版本(可以在ESXI主机或者VCenter中查看主机当前版本号)…

    云计算 2023年4月18日
    00
  • 24位腾讯云专家精彩演讲,4万字《腾讯云技术实践精选集 2021》发布!(附合集下载)

    摘要 随着创新技术的发展,数字经济也迎来了新的风口。新风口下,企业该如何进行云原生改造,实现成本优化?如何对基础架构和数据库技术进行创新,化解可用性、可靠性、高并发、性能、稳定性等难题? 腾讯云近期发布的《腾讯云技术实践精选集 2021》,旨在将过往积累的成功技术和解决方案经验,向外部技术同仁赋能输出,推动产业升级,促进业务创新。 听:技术专家真知灼见 《腾…

    云计算 2023年4月11日
    00
合作推广
合作推广
分享本页
返回顶部