Opencv Random Cropping

OpenCV 中的 RandomCropping 是一种图像增强技术,它可以通过随机裁剪图像来增加数据集的多样性。在 OpenCV 中,可以使用 cv2.random_crop 函数来实现 RandomCropping。

使用 RandomCropping 的基本步骤如下:

  1. 读取图像
  2. 随机裁剪图像
  3. 显示裁剪后的图像

以下是两个示例说明:

示例一:使用 RandomCropping 对图像进行增强

要使用 RandomCropping 对图像进行增强,可以使用以下代码:

import cv2
import numpy as np

# 读取图像
img = cv2.imread('image.jpg')

# 随机裁剪图像
h, w = img.shape[:2]
new_h, new_w = int(h * 0.8), int(w * 0.8)
top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w)
bottom = top + new_h
right = left + new_w
img = img[top:bottom, left:right]

# 显示裁剪后的图像
cv2.imshow('image', img)
cv2.waitKey()
cv2.destroyAllWindows()

这将读取名为 image.jpg 的图像,并使用 RandomCropping 对图像进行增强。最终结果将在窗口中显示。

示例二:使用 RandomCropping 对数据集进行增强

要使用 RandomCropping 对数据集进行增强,可以使用以下代码:

import cv2
import numpy as np

# 读取数据集
data = []
for i in range(10):
    img = cv2.imread(f'image_{i}.jpg')
    data.append(img)

# 随机裁剪图像
new_data = []
for img in data:
    h, w = img.shape[:2]
    new_h, new_w = int(h * 0.8), int(w * 0.8)
    top = np.random.randint(0, h - new_h)
    left = np.random.randint(0, w - new_w)
    bottom = top + new_h
    right = left + new_w
    new_img = img[top:bottom, left:right]
    new_data.append(new_img)

# 显示裁剪后的图像
for img in new_data:
    cv2.imshow('image', img)
    cv2.waitKey()
cv2.destroyAllWindows()

这将读取名为 image_0.jpg 到 image_9.jpg 的 10 张图像,并使用 RandomCropping 对每张图像进行增强。最终结果将在窗口中显示。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Opencv Random Cropping - Python技术站

(0)
上一篇 2023年5月11日
下一篇 2023年5月11日

相关文章

  • Opencv 使用差分金字塔提取高频成分

    以下是关于Opencv使用差分金字塔提取高频成分的详细攻略。 Opencv使用差分金字塔提取高频成分基本原理 差分金字塔是一种常用的图像技术,用于提取图像的高频成分。具体实现方法包括: 对图像进行高斯金字塔分解 高斯金字塔的每一层进行差分操作 对差分金字塔进行重构 差分金字塔可以用于图像的锐化、边缘检测等应用。 Opencv使用差分金字塔提取高频成分的使用方…

    python 2023年5月10日
    00
  • Opencv 使用Gabor滤波器进行边缘检测

    以下是关于Opencv使用Gabor滤波器进行边缘检测的详细攻略。 Opencv使用Gabor滤波器进行边缘检测基本原理 Gabor滤波器是一种常用的图像处理技术,用提取图像的纹理特征。Gabor滤波器的基本原理是将高斯函数和弦函数相乘得到具有特定方向和率的滤波器。在边缘检测中,Gabor滤波器可以用于提取图像中的边缘特征。 Opencv库提供cv2.get…

    python 2023年5月10日
    00
  • Opencv灰度化

    OpenCV大津二值化算法 OpenCV大津二值化算法是一种自适应的二值化方法,可以根据图像的灰度分布自动确定二值化的阈值,从而将图像转换为黑白二值图像。本文将介绍大津二值化算法的基本原理和使用方法,并提供两个示例说明。 大津二值化算法的基本原理 大津二值化算法的基本原理是寻找一个阈值,使得将图像分为两个部分后,两个部分的类内方差之和最小,类间方差之和最大。…

    python 2023年5月10日
    00
  • Opencv Motion Filter

    OpenCV MotionFilter OpenCV MotionFilter是一种图像处理方法,可以用于模拟运动模糊效果。本文将介绍OpenCV MotionFilter的基本原理和使用方法,并提供两个示例。 OpenCV MotionFilter的基本原理 OpenCV MotionFilter是一种线性平滑滤波器,可以用于模拟运动模糊效果。运动糊的基本…

    python 2023年5月10日
    00
  • Opencv 最大池化

    OpenCV最大池化 OpenCV最大池化是一种图像处理方法,可以用于图像降采样和特征提取等应用。本文将介绍OpenCV最大池化的基本原理和使用方法,并提供两个示例说明。 OpenCV最大池化的基本原理 OpenCV最大池化是一种图像处理方法,可以用于图像降采样和特征提取等应用。最大池化的基本思想是将图像分成若干个区域,对每个区域的像素值取最大值,从而得到一…

    python 2023年5月10日
    00
  • Opencv 高斯滤波

    OpenCV高斯滤波 OpenCV高斯滤波是一种图像处理方法,可以用于图像降噪和平滑等应用。本文将介绍OpenCV高斯滤波的基本原理和使用方法,并提供两个示例。 OpenCV高斯滤波的基本原理 OpenCV高斯滤波是一种线性平滑滤波器,可以用于图像降和平滑等应用。高斯滤波的基本思想是对图像中的每个像素点进行加权平均,值由高斯函数决定。OpenCV高斯滤波的具…

    python 2023年5月10日
    00
  • Opencv 黑帽

    以下是关于Opencv 黑帽的详细讲解。 Opencv 黑帽的基本原理 Opencv黑帽是一种基于形态学的技术,通过对图像进行闭运算和开运算操作,可以得到图像中的暗区域。具体实现方法包括: 闭运算:先膨胀后腐蚀,可以填充小的黑点和细小的黑线。 开运算:先腐蚀后膨胀,可以去除小的黑点和细小的黑线。 黑帽操作是将闭运算后的图像减去原图像,得到的是原图像中的暗区域…

    python 2023年5月10日
    00
  • Opencv 直方图

    OpenCV 直方图 OpenCV 直方图是一种用于图像处理和计算机视觉的重要工具,可以用于图像增强、颜色分析、图像分割等应用。本文将介绍OpenCV 直方图的基本原理和使用方法,并提供两个示例。 OpenCV 直方图的基本原理 OpenCV 直方图是一种用于图像处理和计算机视觉的重要工具,可以用于图像增强、颜色分析、图像分割等应用。直方图是对图像像素值的统…

    python 2023年5月10日
    00
合作推广
合作推广
分享本页
返回顶部