来自:https://morvanzhou.github.io/tutorials/machine-learning/torch/3-05-train-on-batch/
import torch
import torch.utils.data as Data
torch.manual_seed(1)
BATCH_SIZE = 8 # 批训练的数据个数
x = torch.linspace(1, 10, 10) # x data (torch tensor)
y = torch.linspace(10, 1, 10) # y data (torch tensor)
# 先转换成 torch 能识别的 Dataset
torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y)
# 把 dataset 放入 DataLoader
loader = Data.DataLoader(
dataset=torch_dataset, # torch TensorDataset format
batch_size=BATCH_SIZE, # mini batch size
shuffle=True, # 要不要打乱数据 (打乱比较好)
num_workers=2, # 多线程来读数据
)
for epoch in range(3): # 训练所有!整套!数据 3 次
for step, (batch_x, batch_y) in enumerate(loader): # 每一步 loader 释放一小批数据用来学习
# 假设这里就是你训练的地方...
# 打出来一些数据
print('批次Epoch: ', epoch, '| Step: ', step, '| 数据batch x: ',
batch_x.numpy(), '| y: ', batch_y.numpy())
批次Epoch: 0 | Step: 0 | 数据batch x: [ 6. 7. 2. 3. 1. 9. 10. 4.] | y: [ 5. 4. 9. 8. 10. 2. 1. 7.]
批次Epoch: 0 | Step: 1 | 数据batch x: [ 8. 5.] | y: [ 3. 6.]
批次Epoch: 1 | Step: 0 | 数据batch x: [ 3. 4. 2. 9. 10. 1. 7. 8.] | y: [ 8. 7. 9. 2. 1. 10. 4. 3.]
批次Epoch: 1 | Step: 1 | 数据batch x: [ 5. 6.] | y: [ 6. 5.]
批次Epoch: 2 | Step: 0 | 数据batch x: [ 3. 9. 2. 6. 7. 10. 4. 8.] | y: [ 8. 2. 9. 5. 4. 1. 7. 3.]
批次Epoch: 2 | Step: 1 | 数据batch x: [ 1. 5.] | y: [ 10. 6.]
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:PyTorch-批量训练技巧 - Python技术站