就像黑火药时代里突然诞生的核弹一样,OpenAI的ChatGPT语言模型的横空出世,是人工智能技术发展史上的一个重要里程碑。这是一款无与伦比、超凡绝伦的模型,能够进行自然语言推理和对话,并且具有出色的语言生成能力。
好吧,本篇的开头其实是由ChatGPT生成的:
没办法,面对这个远超时代的AI产品,我们能说什么呢?顶礼膜拜?惊为天人?任何言语对于描述ChatGPT来说已经是苍白无力的,而辞海中的形容词在面对ChatGPT时也已经鞭长莫及。
一句话:言语不能赞其伟大。
本次我们利用ChatGPT的开放API接入钉钉群聊/单聊机器人,让钉钉机器人具备进行自然语言推理和对话的能力,所谓化腐朽为神奇,不过如此。
注册和使用OpenAi的ChatGPT
首先注册OpenAi平台:https://beta.openai.com/ ,由于ChatGPT过于火爆,导致很多地区无法正常注册,这里推荐使用北美地区的代理IP,与此同时,一定要注意,如果之后希望使用后端的API接口方式调用ChatGPT,就不要使用谷歌或者微软的三方账号进行登录,否则无法通过邮箱和秘钥交换OpenAi平台的access_token,切记。
同时,接受验证码手机号也必须是北美地区的手机号,这里推荐一个北美地区的接码平台:https://sms.qisms.com/index 非常好用。
注册成功之后,这里推荐github上开源大神rawandahmad698已经封装好的开源SDK,避免重复造轮子:https://github.com/rawandahmad698/PyChatGPT
安装SDK:
pip3 install chatgptpy --upgrade
安装好之后,编写测试脚本:
chat = Chat(email="OpenAi邮箱", password="OpenAi密码",proxies="代理地址")
answer = chat.ask("你好")
print(answer)
注意,运行代码之前,一定要使用代理proxies,并且确保是北美地区的IP地址。
程序返回:
[OpenAI] Email address: ********
[OpenAI] Password: *********
[OpenAI] Using proxy: {'http': 'http://localhost:4780', 'https': 'http://localhost:4780'}
[OpenAI] Beginning auth process
[OpenAI][1] Making request to https://chat.openai.com/auth/login
[OpenAI][1] Request was successful
[OpenAI][2] Beginning part two
[OpenAI][2] Grabbing CSRF token from https://chat.openai.com/api/auth/csrf
[OpenAI][2] Request was successful
[OpenAI][2] CSRF Token: 1b1357a34e4b0b9a74e999372fe0413ab981c9a72e030a54b3bf172bd6176c5e
[OpenAI][3] Beginning part three
[OpenAI][3] Making request to https://chat.openai.com/api/auth/signin/auth0?prompt=login
[OpenAI][3] Request was successful
[OpenAI][3] Callback URL: https://auth0.openai.com/authorize?client_id=TdJIcbe16WoTHtN95nyywh5E4yOo6ItG&scope=openid%20email%20profile%20offline_access%20model.request%20model.read%20organization.read&response_type=code&redirect_uri=https%3A%2F%2Fchat.openai.com%2Fapi%2Fauth%2Fcallback%2Fauth0&audience=https%3A%2F%2Fapi.openai.com%2Fv1&prompt=login&state=RJt9U13ATPmlt795xMNohQZcUNOytZNvHoq3JI8HGZ4&code_challenge=Pq97ptna00Ybak2dUmIMhR3eqmXZnZz-Fij7otMMw7U&code_challenge_method=S256
[OpenAI][4] Making request to https://auth0.openai.com/authorize?client_id=TdJIcbe16WoTHtN95nyywh5E4yOo6ItG&scope=openid%20email%20profile%20offline_access%20model.request%20model.read%20organization.read&response_type=code&redirect_uri=https%3A%2F%2Fchat.openai.com%2Fapi%2Fauth%2Fcallback%2Fauth0&audience=https%3A%2F%2Fapi.openai.com%2Fv1&prompt=login&state=RJt9U13ATPmlt795xMNohQZcUNOytZNvHoq3JI8HGZ4&code_challenge=Pq97ptna00Ybak2dUmIMhR3eqmXZnZz-Fij7otMMw7U&code_challenge_method=S256
[OpenAI][4] Request was successful
[OpenAI][4] Current State: hKFo2SA5VzlqUDA0Mkl5TnQtNUpYcGRBU0ZfRkhQVUY1eVpWV6Fur3VuaXZlcnNhbC1sb2dpbqN0aWTZIGMzU0xvbThRUXFxMTczeVg4bF8zRFZnYVNOM2M3Q0RFo2NpZNkgVGRKSWNiZTE2V29USHROOTVueXl3aDVFNHlPbzZJdEc
[OpenAI][5] Making request to https://auth0.openai.com/u/login/identifier?state=hKFo2SA5VzlqUDA0Mkl5TnQtNUpYcGRBU0ZfRkhQVUY1eVpWV6Fur3VuaXZlcnNhbC1sb2dpbqN0aWTZIGMzU0xvbThRUXFxMTczeVg4bF8zRFZnYVNOM2M3Q0RFo2NpZNkgVGRKSWNiZTE2V29USHROOTVueXl3aDVFNHlPbzZJdEc
[OpenAI][5] Request was successful
[OpenAI][5] No captcha detected
[OpenAI][6] Making request to https://auth0.openai.com/u/login/identifier
[OpenAI][6] Email found
[OpenAI][7] Entering password...
[OpenAI][7] Password was correct
[OpenAI][7] Old state: hKFo2SA5VzlqUDA0Mkl5TnQtNUpYcGRBU0ZfRkhQVUY1eVpWV6Fur3VuaXZlcnNhbC1sb2dpbqN0aWTZIGMzU0xvbThRUXFxMTczeVg4bF8zRFZnYVNOM2M3Q0RFo2NpZNkgVGRKSWNiZTE2V29USHROOTVueXl3aDVFNHlPbzZJdEc
[OpenAI][7] New State: c3SLom8QQqq173yX8l_3DVgaSN3c7CDE
[OpenAI][8] Making request to https://auth0.openai.com/authorize/resume?state=c3SLom8QQqq173yX8l_3DVgaSN3c7CDE
[OpenAI][8] All good
[OpenAI][8] Access Token: eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6Ik1UaEVOVUpHTkVNMVFURTRNMEZCTWpkQ05UZzVNRFUxUlRVd1FVSkRNRU13UmtGRVFrRXpSZyJ9.eyJodHRwczovL2FwaS5vcGVuYWkuY29tL3Byb2ZpbGUiOnsiZW1haWwiOiJ6Y3hleTI5MTFAb3V0bG9vay5jb20iLCJlbWFpbF92ZXJpZmllZCI6dHJ1ZSwiZ2VvaXBfY291bnRyeSI6IlVTIn0sImh0dHBzOi8vYXBpLm9wZW5haS5jb20vYXV0aCI6eyJ1c2VyX2lkIjoidXNlci1IcHQ2SXF6R0k0RW43V213dGdzaUVOUjUifSwiaXNzIjoiaHR0cHM6Ly9hdXRoMC5vcGVuYWkuY29tLyIsInN1YiI6ImF1dGgwfDYzOTA3ZWRiMTQzYTFkZjQxMzk5Yzc0YyIsImF1ZCI6WyJodHRwczovL2FwaS5vcGVuYWkuY29tL3YxIiwiaHR0cHM6Ly9vcGVuYWkuYXV0aDAuY29tL3VzZXJpbmZvIl0sImlhdCI6MTY3MDQ1OTkzNywiZXhwIjoxNjcwNTQ2MzM3LCJhenAiOiJUZEpJY2JlMTZXb1RIdE45NW55eXdoNUU0eU9vNkl0RyIsInNjb3BlIjoib3BlbmlkIGVtYWlsIHByb2ZpbGUgbW9kZWwucmVhZCBtb2RlbC5yZXF1ZXN0IG9yZ2FuaXphdGlvbi5yZWFkIG9mZmxpbmVfYWNjZXNzIn0.PtXKhJqwudNKLIkNRc5OO6T7Tsl8ydZ8WWnCJ3Ax2c40CQibRTiGLDmfvk2gW5pVIkOpKldWYs6Jrd8UVi0Ih9VMDwS9JL6HpZKsoRaIhy6r6l7AW5vMMQN-l0ntCsgefQeGIrwtCTUsIklN8dyZDkRkympC2AzRkayAcFvFckXTHi_J5Fivr5J7We_OM4cGFJEKTLkaSw6MnYku-uYwAKPVEpFsF7fLnUBRQxn5Zz90FhdeLYEg4IUjPWKPp1iMbp_fa9qhwwtKBwogtrIVzq2t8NdUotoNYgoo2uV2xjQWC2m4V4C_xgkSzLj2TTtRJMOYKGH-lHWs2_yRQF0wOg
[OpenAI][9] Saving access token...
[OpenAI][8] Saved access token
首次运行程序会通过代理自动登录OpenAi平台,并且换取token,最后将token存储在本地。
随后返回ChatGPT的信息:
➜ mydemo git:(master) ✗ /opt/homebrew/bin/python3.10 "/Users/liuyue/wodfan/work/mydemo/test_chatgpt.py"
Using proxies: http://localhost:4780
你好,很高兴为你提供帮助。有什么需要我帮忙的吗?
至此,ChatGPT接口就调试好了。
配置钉钉Dingding机器人
随后,我们来配置C端的机器人,注意这里一定要使用支持outgoing回调的企业机器人,而不是普通的机器人,参考文档:https://open.dingtalk.com/document/group/enterprise-created-chatbot
创建好企业机器人之后,获取机器人应用的Key和秘钥,同时配置好出口IP和接口地址:
所谓出口IP即调用钉钉服务合法的ip,消息接受地址是接受C端信息的地址,这里我们使用异步非阻塞的Tornado框架来构建接受信息服务:
import hmac
import hashlib
import base64
import json
import tornado
from tornado.options import define, options
define('port', default=8000, help='default port',type=int)
class Robot(tornado.web.RequestHandler):
async def post(self):
timestamp = self.request.headers.get('timestamp', None)
sign = self.request.headers.get('sign', None)
app_secret = '钉钉机器人秘钥'
app_secret_enc = app_secret.encode('utf-8')
string_to_sign = '{}n{}'.format(timestamp, app_secret)
string_to_sign_enc = string_to_sign.encode('utf-8')
hmac_code = hmac.new(app_secret_enc, string_to_sign_enc, digestmod=hashlib.sha256).digest()
my_sign = base64.b64encode(hmac_code).decode('utf-8')
if sign != my_sign:
return self.finish({"errcode":1,"msg":"签名有误"})
data = json.loads(self.request.body)
text = data['text']["content"]
atUsers = data.get("atUsers",None)
uid = data.get("senderStaffId",None)
return self.finish({"errcode":0,"msg":text})
urlpatterns = [
(r"/robot_chat/",Robot),
]
# 创建Tornado实例
application = tornado.web.Application(urlpatterns,debug=True)
if __name__ == "__main__":
tornado.options.parse_command_line()
application.listen(options.port)
tornado.ioloop.IOLoop.instance().start()
这里我们通过Robot异步控制器来接受所有来自钉钉客户端的信息,即人类对机器人说的话,需要注意的是,后端服务需要对请求头中的timestamp和sign进行验证,以判断是否是来自钉钉的合法请求,避免其他仿冒钉钉调用开发者的HTTPS服务传送数据。
所以这里一旦签名有问题,就结束逻辑:
timestamp = self.request.headers.get('timestamp', None)
sign = self.request.headers.get('sign', None)
app_secret = '钉钉机器人秘钥'
app_secret_enc = app_secret.encode('utf-8')
string_to_sign = '{}n{}'.format(timestamp, app_secret)
string_to_sign_enc = string_to_sign.encode('utf-8')
hmac_code = hmac.new(app_secret_enc, string_to_sign_enc, digestmod=hashlib.sha256).digest()
my_sign = base64.b64encode(hmac_code).decode('utf-8')
if sign != my_sign:
return self.finish({"errcode":1,"msg":"签名有误"})
最后该接口会返回发信人id(uid)以及具体信息内容(text)。
至此,后端接受服务就配置好了。
下面就是后端推送服务,首先,根据官方文档:https://open.dingtalk.com/document/orgapp-server/obtain-the-access_token-of-an-internal-app?spm=ding_open_doc.document.0.0.5f255239xgW3zE#topic-2056397
需要获取钉钉接口的token:
def get_token(self):
res = requests.post("https://api.dingtalk.com/v1.0/oauth2/accessToken",data=json.dumps({"appKey":self._appKey,"appSecret":self._appSecret}),headers={"Content-Type":"application/json"})
token = res.json()["accessToken"]
return token
我们来配置单聊推送:
# 单聊
def send_message(self,uid,message):
res = requests.post("https://api.dingtalk.com/v1.0/robot/oToMessages/batchSend",data=json.dumps({"robotCode":self._appKey,"userIds":[uid],"msgKey":"sampleText","msgParam":'{"content":"'+message+'"}'}),headers={"Content-Type":"application/json","x-acs-dingtalk-access-token":self._token})
print(res.text)
具体效果:
接着,继续根据官方文档:https://open.dingtalk.com/document/robots/guide-to-user-access-for-intra-enterprise-robot-group-chat
配置群聊推送方法:
# 群聊
def send_user(self,uid,message):
data = {
"at": {
"atUserIds": [
uid
]
},
"text": {
"content": message
},
"msgtype": "text"
}
res = requests.post(self._webhook,data=json.dumps(data),headers={"Content-Type":"application/json"})
print(res.text)
群聊效果:
这里需要注意的是,单聊是通过接口的方式进行推送,而群内聊天是通过webhook方式进行推送,关于webhook,请移玉步至:使用python3.7配置开发钉钉群自定义机器人(2020年新版攻略)
完整代码:
import requests
import json
from pychatgpt import Chat
class DingDing:
def __init__(self,appKey=None,appSecret=None) -> None:
self._appKey = appKey
self._appSecret = appSecret
self._token = self.get_token()
# 机器人webhook地址
self._webhook = ""
def get_token(self):
res = requests.post("https://api.dingtalk.com/v1.0/oauth2/accessToken",data=json.dumps({"appKey":self._appKey,"appSecret":self._appSecret}),headers={"Content-Type":"application/json"})
token = res.json()["accessToken"]
return token
# 单聊
def send_message(self,uid,message):
res = requests.post("https://api.dingtalk.com/v1.0/robot/oToMessages/batchSend",data=json.dumps({"robotCode":self._appKey,"userIds":[uid],"msgKey":"sampleText","msgParam":'{"content":"'+message+'"}'}),headers={"Content-Type":"application/json","x-acs-dingtalk-access-token":self._token})
print(res.text)
# 群聊
def send_user(self,uid,message):
data = {
"at": {
"atUserIds": [
uid
]
},
"text": {
"content": message
},
"msgtype": "text"
}
res = requests.post(self._webhook,data=json.dumps(data),headers={"Content-Type":"application/json"})
print(res.text)
if __name__ == '__main__':
dingding = DingDing("appkey","appSecret")
#chat = Chat(email="OpenAi邮箱", password="OpenAi密码",proxies="代理地址")
#answer = chat.ask("你好")
# 单聊
#dingding.send_message('uid',answer)
# 群聊
#dingding.send_user('uid',answer)
#print(answer)
至此,后端推送服务就配置好了。
结语
最后,奉上Github项目地址,与众亲同飨:https://github.com/zcxey2911/Python_ChatGPT_ForDingding_OpenAi ,毫无疑问,ChatGPT是NLP领域历史上最伟大的项目,没有之一,伟大,就是技术层面的极致,你同意吗?
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:把盏言欢,款款而谈,ChatGPT结合钉钉机器人(outgoing回调)打造人工智能群聊/单聊场景,基于Python3.10 - Python技术站