下面详细讲解“TFRecord格式存储数据与队列读取实例”的完整攻略。本文将包含两个具体的示例说明,以帮助读者更好地理解和掌握相关知识。
什么是TFRecord格式?
TFRecord是一种TensorFlow的数据格式,它是一种二进制格式,可以更加高效地存储数据,方便数据的快速读取和处理。
使用TFRecord的好处包括:
- 无需通过大量的代码去读取和处理数据;
- 快速的并行化数据处理的方法;
- 可以将多个文件合并成一个文件,方便读取。
TFRecord格式通常用于存储大量的数据。
TFRecord格式的存储
可以使用Python的Protocol Buffer库来存储数据。Protocol Buffer是Google开发的用于序列化结构化数据的一种格式。它可以将数据进行编码,然后以二进制格式进行存储。
存储数据的步骤如下:
- 创建一个
tf.train.Example
对象,这个对象包含了需要存储的信息。
```python
import tensorflow as tf
# 创建一个字典用于存储特征
feature_dict = {'image': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_bytes])),
'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[label]))}
# 创建一个Example对象
example = tf.train.Example(features=tf.train.Features(feature=feature_dict))
```
- 将
tf.train.Example
对象序列化为一个字符串:
python
serialized_example = example.SerializeToString()
- 将字符串写入TFRecord文件:
python
writer.write(serialized_example)
使用队列读取TFRecord格式的数据
可以先创建一个输入队列,然后通过读取队列中的元素来获取数据,具体的步骤如下:
- 创建一个输入队列:
python
filename_queue = tf.train.string_input_producer([filename])
- 定义一个TFRecordReader对象读取数据:
python
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
- 将序列化后的字符串解析为一个
tf.train.Example
对象:
python
features = tf.parse_single_example(serialized_example, features={
'image': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64)})
image = tf.decode_raw(features['image'], tf.uint8)
label = tf.cast(features['label'], tf.int32)
- 对读取的数据进行预处理:
python
image = tf.reshape(image, [height, width, num_channels])
image = tf.cast(image, tf.float32)
image /= 255.0
- 创建一个batch:
python
images_batch, labels_batch = tf.train.shuffle_batch([image, label], batch_size=batch_size,
capacity=capacity, min_after_dequeue=min_after_dequeue)
通过以上步骤,一个输入数据的队列就创建好了,现在就可以通过sess.run
的方式去读取数据了。
示例1:存储MNIST图像数据和标签数据为TFRecord文件
下面是一个例子,展示如何将MNIST图像数据和标签数据保存为TFRecord文件。
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 数据集参数
num_examples = input_data.train.num_examples
num_classes = 10
# 文件路径和名称
filename = 'mnist.tfrecords'
# 将数据写入TFRecord文件
writer = tf.python_io.TFRecordWriter(filename)
for i in range(num_examples):
image_raw = input_data.train.images[i].tostring()
label_raw = input_data.train.labels[i].astype(int).tostring()
feature_dict = {'image_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_raw])),
'label_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[label_raw]))}
example = tf.train.Example(features=tf.train.Features(feature=feature_dict))
writer.write(example.SerializeToString())
writer.close()
示例2:读取TFRecord格式的数据并进行训练
下面是一个例子,展示如何从TFRecord文件中读取数据,并进行训练。
import tensorflow as tf
# 数据集参数
batch_size = 128
capacity = 10000
min_after_dequeue = 3000
# 文件路径和名称
filename = 'mnist.tfrecords'
# 创建一个输入队列
filename_queue = tf.train.string_input_producer([filename])
# 定义一个TFRecordReader对象读取数据
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
# 将序列化后的字符串解析为一个Example对象
features = tf.parse_single_example(serialized_example, features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label_raw': tf.FixedLenFeature([], tf.string)})
# 将图像数据解析为一个Tensor
image = tf.decode_raw(features['image_raw'], tf.uint8)
image.set_shape([784])
# 将标签数据解析为一个Tensor
label = tf.decode_raw(features['label_raw'], tf.int32)
label.set_shape([])
# 进行数据预处理
image = tf.cast(image, tf.float32)
image /= 255.0
# 创建一个batch
images_batch, labels_batch = tf.train.shuffle_batch([image, label], batch_size=batch_size,
capacity=capacity, min_after_dequeue=min_after_dequeue)
# 构建模型
x = tf.placeholder(tf.float32, [batch_size, 784])
y = tf.placeholder(tf.int32, [batch_size])
logits = tf.layers.dense(x, num_classes, activation=None)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y))
train_op = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(loss)
# 训练模型
with tf.Session() as sess:
# 初始化所有变量
sess.run(tf.global_variables_initializer())
# 启动输入队列
tf.train.start_queue_runners()
# 迭代训练
for i in range(1000):
images, labels = sess.run([images_batch, labels_batch])
_, l = sess.run([train_op, loss], feed_dict={x: images, y: labels})
if i % 10 == 0:
print('Step {:5d}: loss = {:.3f}'.format(i, l))
通过上面两个示例,相信大家已经初步了解了如何使用TFRecord格式存储数据并进行队列读取。当然,实际应用中,还需要根据不同的数据集,进行一些细节的调整和处理。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:TFRecord格式存储数据与队列读取实例 - Python技术站