机器学习模型当中,目前最为先进的也就是xgboost和lightgbm这两个树模型了。那么我们该如何进行调试参数呢?哪些参数是最重要的,需要调整的,哪些参数比较一般,这两个模型又该如何通过代码进行调用呢?下面是一张总结了xgboost,lightbgm,catboost这三个模型调试参数的一些经验,以及每个参数需要的具体数值以及含义,供大家参考:
一.Xgboost配合grid search进行网格搜索参数
实现代码如下:
mport xgboost as xgb from sklearn import metrics from sklearn.model_selection import GridSearchCV def auc(m, train, test): return (metrics.roc_auc_score(y_train, m.predict_proba(train)[:,1]), metrics.roc_auc_score(y_test, m.predict_proba(test)[:,1])) # Parameter Tuning model = xgb.XGBClassifier() param_dist = {"max_depth": [10,30,50], "min_child_weight" : [1,3,6], "n_estimators": [200], "learning_rate": [0.05, 0.1,0.16],} grid_search = GridSearchCV(model, param_grid=param_dist, cv = 3, verbose=10, n_jobs=-1) grid_search.fit(train, y_train) grid_search.best_estimator_ model = xgb.XGBClassifier(max_depth=3, min_child_weight=1, n_estimators=20,\ n_jobs=-1 , verbose=1,learning_rate=0.16) model.fit(train,y_train) print(auc(model, train, test))
这里使用了自定义的auc作为模型的评价指标,输出如下:
Fitting 3 folds for each of 27 candidates, totalling 81 fits (0.7479275227922775, 0.7430946047035487)
二.LightGBM配合grid search进行网格搜索参数
代码如下:
import lightgbm as lgb from sklearn import metrics def auc2(m, train, test): return (metrics.roc_auc_score(y_train,m.predict(train)), metrics.roc_auc_score(y_test,m.predict(test))) lg = lgb.LGBMClassifier(silent=False) param_dist = {"max_depth": [25,50, 75], "learning_rate" : [0.01,0.05,0.1], "num_leaves": [300,900,1200], "n_estimators": [200] } grid_search = GridSearchCV(lg, n_jobs=-1, param_grid=param_dist, cv = 3, scoring="roc_auc", verbose=5) grid_search.fit(train,y_train) grid_search.best_estimator_
#使用lgbm原生态的方式进行训练 d_train = lgb.Dataset(train, label=y_train, free_raw_data=False) params = {"max_depth": 3, "learning_rate" : 0.1, "num_leaves": 900, "n_estimators": 20} # Without Categorical Features model2 = lgb.train(params, d_train) print(auc2(model2, train, test)) #With Catgeorical Features cate_features_name = ["MONTH","DAY","DAY_OF_WEEK","AIRLINE","DESTINATION_AIRPORT", "ORIGIN_AIRPORT"] model2 = lgb.train(params, d_train, categorical_feature = cate_features_name) print(auc2(model2, train, test))
第三种引用方式lbgm的方式是,sklearn和lgbm相结合,这样就可以使用sklearn对lgbm的运行结果快速进行评估。
# coding: utf-8 import lightgbm as lgb import pandas as pd from sklearn.metrics import mean_squared_error from sklearn.model_selection import GridSearchCV # 加载数据 print('加载数据...') df_train = pd.read_csv('../data/regression.train.txt', header=None, sep='\t') df_test = pd.read_csv('../data/regression.test.txt', header=None, sep='\t') # 取出特征和标签 y_train = df_train[0].values y_test = df_test[0].values X_train = df_train.drop(0, axis=1).values X_test = df_test.drop(0, axis=1).values print('开始训练...') # 直接初始化LGBMRegressor # 这个LightGBM的Regressor和sklearn中其他Regressor基本是一致的 gbm = lgb.LGBMRegressor(objective='regression', num_leaves=31, learning_rate=0.05, n_estimators=20) # 使用fit函数拟合 gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], eval_metric='l1', early_stopping_rounds=5) # 预测 print('开始预测...') y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration_) # 评估预测结果 print('预测结果的rmse是:') print(mean_squared_error(y_test, y_pred) ** 0.5)
这就是Xgboost/LightGBM的基本代码使用啦!
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:【机器学习】:Xgboost/LightGBM使用与调参技巧 - Python技术站