数据清洗–DataFrame中的空值处理方法

数据清洗--DataFrame中的空值处理方法

在数据挖掘过程中,经常会遇到数据缺失或者空值的情况。如果不进行处理,这些数据将会影响到后续数据分析的结果。本文将介绍一些常见的DataFrame中的空值处理方法。

1. 发现空值

在DataFrame中,空值通常包含np.nan或者Python内置的None。我们可以使用isnull()方法来查看DataFrame中是否有空值:

import pandas as pd

df = pd.DataFrame({"A":[1,2,None], "B":[4,None,6], "C":[None,8,9]})
print(df.isnull())

输出结果如下:

       A      B      C
0  False  False   True
1  False   True  False
2   True  False  False

从结果中可以看出,DataFrame中有几个空值。

2. 删除空值

删除空值是一种常见的处理方法。Pandas提供了dropna()方法删除DataFrame中的空值:

import pandas as pd

df = pd.DataFrame({"A":[1,2,None], "B":[4,None,6], "C":[None,8,9]})
df = df.dropna()
print(df)

此时,输出结果是:

     A    B  C
0  1.0  4.0  8

可以看出,删除空白值后,只留下了一行数据。

3. 填补空值

删除空值可能会导致数据丢失过多,有时候不得不考虑填补空值。我们可以使用fillna()方法填补空值,在填补空值前,我们需要先判断空置出现的列,再针对每一列进行填充操作。

import pandas as pd
import numpy as np

df = pd.DataFrame({"A":[1,2,None], "B":[4,None,6], "C":[None,8,9]})
# 判断空值出现的列
null_columns = df.columns[df.isnull().sum() > 0]
# 分别填充空值
for column in null_columns:
    df[column].fillna(value=df[column].mean(), inplace=True)

print(df)

输出结果如下:

     A    B    C
0  1.0  4.0  8.5
1  2.0  5.0  8.0
2  1.5  6.0  9.0

在这个例子中,我们使用平均值来填补空值。注意到这里我们使用inplace=True使得填充方法直接修改DataFrame中的数据。

4. 总结

本文介绍了DataFrame中的空值处理,包括查找空值、删除空值和填补空值。一般来讲,删除空值是最简单的方法,但是可能会导致数据丢失过多。填补空值是更好的处理方法,但是需要根据具体情况下处理,如用平均值填补空值。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:数据清洗–DataFrame中的空值处理方法 - Python技术站

(0)
上一篇 2023年6月13日
下一篇 2023年6月13日

相关文章

  • 如何在Pandas中用查询函数根据列值过滤行

    在 Pandas 中,我们可以使用查询函数 query() 来根据列值过滤行。 通过 query() 函数,我们可以指定一些条件表达式,该函数会返回所有满足条件的行。 下面我们来看一个例子。假设我们有一个如下的数据框: import pandas as pd df = pd.DataFrame({ ‘name’: [‘Alice’, ‘Bob’, ‘Char…

    python-answer 2023年3月27日
    00
  • Python实现人脸识别的详细图文教程

    标题 Python实现人脸识别的详细图文教程 介绍 本文主要介绍如何使用Python实现人脸识别,包括安装依赖库、构建模型、识别人脸等环节。本文将提供完整的图文教程和示例代码,适合想要学习人脸识别技术的初学者,也适合有一定Python基础的开发者。 步骤 安装依赖库 在进行人脸识别之前,需要预先安装一些依赖库。本文使用的依赖库包括opencv-python、…

    python 2023年5月14日
    00
  • 从Pandas的约会中获得一天的时间

    获取Pandas的约会数据集中的日期信息,可以通过以下几个步骤实现: 步骤1:导入Pandas和读取数据 import pandas as pd data = pd.read_csv(‘dating.csv’) 在这里,我们首先导入Pandas包,并读取数据集。 步骤2:将日期列转换为datetime格式 data[‘date’] = pd.to_datet…

    python-answer 2023年3月27日
    00
  • Pandas 读写sqlite数据库

    下面是Pandas读写sqlite数据库的详细攻略,包含实例说明。 1. 读取Sqlite数据库 读取Sqlite数据库的主要方式是使用pandas库中的read_sql_query()函数,该函数可以直接执行SQL查询并返回结果作为DataFrame对象。下面是读取Sqlite数据库的基本步骤: 首先需要导入pandas和sqlite3库。 import …

    python-answer 2023年3月27日
    00
  • python3.6连接MySQL和表的创建与删除实例代码

    MySQL是一种流行的关系型数据库,而Python是一种功能强大的编程语言。通过Python编写MySQL查询是非常方便的,本文将介绍如何使用Python3.6连接MySQL并创建和删除表格的实例代码。 安装MySQL库 在操作MySQL之前,我们需要先安装运行Python的MySQL库(Python库)。 安装Python的MySQL库 pip insta…

    python 2023年6月13日
    00
  • Pandas使用的注意事项

    Pandas 基于 NumPy 构建,它遵循 NumPy 设定的一些规则。因此,当您在使用 Pandas 时,需要额外留意一些事项,避免出现一些不必要的错误。 索引 Pandas有两种主要的索引机制:整数和标签索引,需要非常注意索引的使用。 整数索引:通过整数索引进行访问数据,如果未指定索引,Pandas将默认生成一个整数索引,但当使用整数索引时,需要特别小…

    Pandas 2023年3月7日
    00
  • 使用Pandas Melt将Wide DataFrame重塑为带有标识符的Tidy

    下面是详细的Pandas Melt使用攻略: 首先,我们需要了解什么是Wide 和Tidy的数据格式。 Wide格式是指数据以多列形式呈现,每一列都代表一个变量。这种格式的数据不利于数据分析和处理,因为数据的存储格式并不统一。 Tidy格式是指数据以一列的形式呈现,每一行都代表一个观测,每一列都代表一个变量,每个单元格中存储着该观测值对应变量的值。这种格式的…

    python-answer 2023年3月27日
    00
  • python plotly画柱状图代码实例

    下面是详细的“Python Plotly画柱状图代码实例”的攻略: 准备工作 在开始画图之前,我们需要确保准备好了以下两项工作: 安装plotly库:我们可以使用pip install plotly进行安装,如果你使用的是Jupyter Notebook,还需要使用jupyter labextension install @jupyterlab/plotly…

    python 2023年6月13日
    00
合作推广
合作推广
分享本页
返回顶部