张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix)

张量(Tensor):Tensor = multi-dimensional array of numbers 张量是一个多维数组,它是标量,向量,矩阵的高维扩展 ,是一个数据容器,张量是矩阵向任意维度的推广

注意,张量的维度(dimension)通常叫作轴(axis), 张量轴的个数也叫作阶(rank)]

标量(scalar):只有一个数字的张量叫标量(也叫标量张量、零维张量、0D 张量)

x = np.array(12)
print(x.ndim) 可以用 ndim 属性来查看一个 Numpy 张量的轴的个数。标量张量有 0 个轴( ndim == 0 )。

向量(vector):数字组成的数组叫作向量(vector)或一维张量(1D 张量)。一维张量只有一个轴。下面是一个 Numpy 向量

np.array([12, 3, 6, 14, 7])
这个向量有 5 个元素,所以被称为 5D 向量。不要把 5D 向量和 5D 张量弄混! 5D 向量只有一个轴,沿着轴有 5 个维度,而 5D 张量有 5 个轴(沿着每个轴可能有任意个维度)

矩阵(matrix):是一个按照长方阵列排列的复数或实数集合,矩阵是二维张量(2D 张量)

np.array([[5, 78, 2, 34, 0], [6, 79, 3, 35, 1], [7, 80, 4, 36, 2]])
向量组成的数组叫作矩阵(matrix)或二维张量(2D 张量)。矩阵有 2 个轴(通常叫作行和列)。你可以将矩阵直观地理解为数字组成的矩形网格。下面是一个 Numpy 矩阵。

3D 张量n 维张量
将多个矩阵组合成一个新的数组,可以得到一个 3D 张量,你可以将其直观地理解为数字组成的立方体。下面是一个 Numpy 的 3D 张量。

np.array([[[5, 78, 2, 34, 0],
           [6, 79, 3, 35, 1],
           [7, 80, 4, 36, 2]],

          [[5, 78, 2, 34, 0],
           [6, 79, 3, 35, 1],
           [7, 80, 4, 36, 2]],

          [[5, 78, 2, 34, 0],
           [6, 79, 3, 35, 1],
           [7, 80, 4, 36, 2]]])

将多个 3D 张量组合成一个数组,可以创建一个 4D 张量,以此类推。深度学习处理的一般是 0D 到 4D 的张量,但处理视频数据时可能会遇到 5D 张量。

image

image

张量属性

张量是由以下三个关键属性来定义的。

  • 轴的个数(阶):例如,3D 张量有 3 个轴,矩阵有 2 个轴。这在 Numpy 等 Python 库中也叫张量的 ndim 。
  • 形状(shape):这是一个整数元组,表示张量沿每个轴的维度大小(元素个数)。例如,前面矩阵示例的形状为 (3, 5) ,3D 张量示例的形状为 (3, 3, 5) 。向量的形状只包含一个元素,比如 (5,) ,而标量的形状为空,即 () 。(张量的形状)
  • 数据类型(dtype):这是张量中所包含数据的类型,例如,张量的类型可以是 float32 、 uint8 、 float64 等。在极少数情况下,你可能会遇到字符( char )张量。注意:Numpy(以及大多数其他库)中不存在字符串张量,因为张量存储在预先分配的连续内存段中,而字符串的长度是可变的,无法用这种方式存储。

data:    Tensor的值;
dtype:    Tensor的数据类型;
shape:    Tensor的形状;
device:    Tensor所在的设备(CPU/GPU);
requires_grad:    是否需要梯度;
grad:    Tensor的梯度;
grad_fn:    创建Tensor的函数;
is_leaf:    是否是叶子节点

image

数据张量

向量数据:2D 张量,形状为 (samples, features)

这是最常见的数据。对于这种数据集,每个数据点都被编码为一个向量,因此一个数据批量就被编码为 2D 张量(即向量组成的数组),其中第一个轴是样本轴,第二个轴是特征轴。
例子:

  • 人口统计数据集,其中包括每个人的年龄、邮编和收入。每个人可以表示为包含 3 个值的向量,而整个数据集包含 100 000 个人,因此可以存储在形状为 (100000, 3) 的 2D张量中。
  • 文本文档数据集,我们将每个文档表示为每个单词在其中出现的次数(字典中包含20 000 个常见单词)。每个文档可以被编码为包含 20 000 个值的向量(每个值对应于字典中每个单词的出现次数),整个数据集包含 500 个文档,因此可以存储在形状为(500, 20000) 的张量中。

时间序列数据或序列数据:3D 张量,形状为 (samples, timesteps, features)

当时间(或序列顺序)对于数据很重要时,应该将数据存储在带有时间轴的 3D 张量中。每个样本可以被编码为一个向量序列(即 2D 张量),因此一个数据批量就被编码为一个 3D 张量(见下图)
image
根据惯例,时间轴始终是第 2 个轴(索引为 1 的轴)。

我们来看几个例子。

  • 股票价格数据集。每一分钟,我们将股票的当前价格、前一分钟的最高价格和前一分钟的最低价格保存下来。因此每分钟被编码为一个 3D 向量,整个交易日被编码为一个形状为 (390, 3) 的 2D 张量(一个交易日有 390 分钟),而 250 天的数据则可以保存在一个形状为 (250, 390, 3) 的 3D 张量中。这里每个样本是一天的股票数据。
  • 推文数据集。我们将每条推文编码为 280 个字符组成的序列,而每个字符又来自于 128个字符组成的字母表。在这种情况下,每个字符可以被编码为大小为 128 的二进制向量(只有在该字符对应的索引位置取值为 1,其他元素都为 0)。那么每条推文可以被编码为一个形状为 (280, 128) 的 2D 张量,而包含 100 万条推文的数据集则可以存储在一个形状为 (1000000, 280, 128) 的张量中。

图像:4D张量,形状为 (samples, height, width, channels) 或 (samples, channels,height, width) 。

图像通常具有三个维度:高度、宽度和颜色深度。虽然灰度图像(比如 MNIST 数字图像)只有一个颜色通道,因此可以保存在 2D 张量中,但按照惯例,图像张量始终都是 3D 张量,灰度图像的彩色通道只有一维。因此,如果图像大小为 256×256,那么 128 张灰度图像组成的批量可以保存在一个形状为 (128, 256, 256, 1) 的张量中,而 128 张彩色图像组成的批量则可以保存在一个形状为 (128, 256, 256, 3) 的张量中。
图像张量的形状有两种约定:通道在后(channels-last)的约定(在 TensorFlow 中使用)和通道在前(channels-first)的约定(在 Theano 中使用)。Google 的 TensorFlow 机器学习框架将颜色深度轴放在最后: (samples, height, width, color_depth) 。与此相反,Theano将图像深度轴放在批量轴之后: (samples, color_depth, height, width) 。如果采用 Theano 约定,前面的两个例子将变成 (128, 1, 256, 256) 和 (128, 3, 256, 256) 。Keras 框架同时支持这两种格式。

如下图所示是一张普通的水果图片,按照RGB三原色表示,其可以拆分为红色、绿色和蓝色的三张灰度图片,如果将这种表示方法用张量的形式写出来,就是图中最下方的那张表格
image
image
图中只显示了前5行、320列的数据,每个方格代表一个像素点,其中的数据[1.0, 1.0, 1.0]即为颜色。假设用[1.0, 0, 0]表示红色,[0, 1.0, 0]表示绿色,[0, 0, 1.0]表示蓝色,那么如图所示,前面5行的数据则全是白色

用四阶张量表示一个包含多张图片的数据集,其中的四个维度分别是:图片在数据集中的编号,图片高度、宽度,以及色彩数据。

视频:5D张量,形状为 (samples, frames, height, width, channels) 或 (samples,frames, channels, height, width)

视频数据是现实生活中需要用到 5D 张量的少数数据类型之一。视频可以看作一系列帧,每一帧都是一张彩色图像。由于每一帧都可以保存在一个形状为 (height, width, color_depth) 的 3D 张量中,因此一系列帧可以保存在一个形状为 (frames, height, width,color_depth) 的 4D 张量中,而不同视频组成的批量则可以保存在一个 5D 张量中,其形状为(samples, frames, height, width, color_depth) 。

举个例子,一个以每秒 4 帧采样的 60 秒 YouTube 视频片段,视频尺寸为 144×256,这个视频共有 240 帧。4 个这样的视频片段组成的批量将保存在形状为 (4, 240, 144, 256, 3)的张量中。总共有 106 168 320 个值!如果张量的数据类型( dtype )是 float32 ,每个值都是32 位,那么这个张量共有 405MB。好大!你在现实生活中遇到的视频要小得多,因为它们不以float32 格式存储,而且通常被大大压缩,比如 MPEG 格式。

image
image
image
image

原文链接:https://www.cnblogs.com/vipsoft/p/17361876.html

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:张量(Tensor)、标量(scalar)、向量(vector)、矩阵(matrix) - Python技术站

(0)
上一篇 2023年5月11日
下一篇 2023年5月11日

相关文章

  • 2.keras实现–>深度学习用于文本和序列

    将文本分割成单词(token),并将每一个单词转换为一个向量 将文本分割成单字符(token),并将每一个字符转换为一个向量 提取单词或字符的n-gram(token),并将每个n-gram转换为一个向量。n-gram是多个连续单词或字符的集合   将向量与标记相关联的方法有:one-hot编码与标记嵌入(token embedding) 具体见https:…

    2023年4月8日
    00
  • keras_5_数据预处理

    1. 序列预处理 TimeseriesGenerator 用于生成批量时序数据的实用工具类。这个类以一系列由相等间隔以及一些时间序列参数(例如步长、历史长度等)汇集的数据点作为输入,以生成用于训练/验证的批次数据。 from keras.preprocessing.sequence import TimeseriesGenerator import nump…

    Keras 2023年4月5日
    00
  • tensorflow学习官网地址

    摘自: http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/overview.html 内容很多,需要花时间看完

    tensorflow 2023年4月8日
    00
  • 卷积算法动画演示

    https://github.com/vdumoulin/conv_arithmetic [1] Vincent Dumoulin, Francesco Visin – A guide to convolution arithmetic for deep learning (BibTeX) Convolution animations卷积 N.B.: Blu…

    2023年4月8日
    00
  • 卷积神经网络CNN与深度学习常用框架的介绍与使用

    一、神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器就是要找到一条直线把这两类样本点分开。 对于非线性可分的样本,可以加一些kernel核函数或者特征的映射使其成为一个曲线或者一个曲面将样本分开。但为什么效果不好…

    2023年4月8日
    00
  • TensorFlow 深度学习笔记 逻辑回归 实践篇

    转载请注明作者:梦里风林Github工程地址:https://github.com/ahangchen/GDLnotes欢迎star,有问题可以到Issue区讨论官方教程地址视频/字幕下载 课程目标:学习简单的数据展示,训练一个Logistics Classifier,熟悉以后要使用的数据 Install Ipython NoteBook 可以参考这个教程 …

    2023年4月8日
    00
  • 用于图像降噪的卷积自编码器

    这篇文章的目的是介绍关于利用自动编码器实现图像降噪的内容。 在神经网络世界中,对图像数据进行建模需要特殊的方法。其中最著名的是卷积神经网络(CNN或ConvNet)或称为卷积自编码器。并非所有的读者都了解图像数据,那么我先简要介绍图像数据(如果你对这方面已经很清楚了,可以跳过)。然后,我会介绍标准神经网络。这个标准神经网络用于图像数据,比较简单。这解释了处理…

    2023年4月8日
    00
  • NLP(五):BiGRU_Attention的pytorch实现

    一、预备知识 1、nn.Embedding 在pytorch里面实现word embedding是通过一个函数来实现的:nn.Embedding. # -*- coding: utf-8 -*- import numpy as np import torch import torch.nn as nn import torch.nn.functional a…

    PyTorch 2023年4月7日
    00
合作推广
合作推广
分享本页
返回顶部