import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #this is data mnist = input_data.read_data_sets("MNIST_data",one_hot=True) lr = 0.001 train_iters = 10000 batch_size = 128 display_step = 10 n_inputs = 28 n_steps = 28 n_hidden_unis = 128 n_classes = 10 x = tf.placeholder(tf.float32,[None,n_steps,n_inputs]) y = tf.placeholder(tf.float32,[None,n_classes]) #define weight weights = { #(28,128) "in":tf.Variable(tf.random_normal([n_inputs,n_hidden_unis])), #(128,10) "out":tf.Variable(tf.random_normal([n_hidden_unis,n_classes])) } biases = { #(128,) "in":tf.Variable(tf.constant(0.1,shape=[n_hidden_unis,])), #(10,) "out":tf.Variable(tf.constant(0.1,shape=[n_classes,])) } def RNN(X,weights,biases): #形状变换成lstm可以训练的维度 X = tf.reshape(X,[-1,n_inputs]) #(128*28,28) X_in = tf.matmul(X,weights["in"])+biases["in"] #(128*28,128) X_in = tf.reshape(X_in,[-1,n_steps,n_hidden_unis]) #(128,28,128) #cell lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_unis,forget_bias=1.0,state_is_tuple=True) #lstm cell is divided into two parts(c_state,m_state) _init_state = lstm_cell.zero_state(batch_size,dtype=tf.float32) outputs,states = tf.nn.dynamic_rnn(lstm_cell,X_in,initial_state=_init_state,time_major = False) #outputs # results = tf.matmul(states[1],weights["out"])+biases["out"] #or outputs = tf.transpose(outputs,[1,0,2]) results = tf.matmul(outputs[-1],weights["out"])+biases["out"] return results pred = RNN(x,weights,biases) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y)) train_op = tf.train.AdamOptimizer(lr).minimize(loss) correct_pred = tf.equal(tf.argmax(pred,1),tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32)) init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) step = 0 while step*batch_size < train_iters: batch_xs,batch_ys = mnist.train.next_batch(batch_size) batch_xs = batch_xs.reshape([batch_size,n_steps,n_inputs]) sess.run(train_op,feed_dict={x:batch_xs,y:batch_ys}) if step%20 ==0: print(sess.run(accuracy,feed_dict={x:batch_xs,y:batch_ys}))
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:tensorflow1.0 构建lstm做图片分类 - Python技术站