掌握动态规划,从“什么问题适合用”及“解题思路”入手

摘要:一般是用动态规划来解决最优问题。

本文分享自华为云社区《深入浅出动态规划算法(中)》,作者:嵌入式视觉 。

一,“一个模型三个特征”理论讲解

一个模型指的是适合用动态规划算法解决的问题的模型,这个模型也被定义为“多阶段决策最优解模型”。具体解释如下:

一般是用动态规划来解决最优问题。而解决问题的过程,需要经历多个决策阶段。每个决策阶段都对应着一组状态。然后我们寻找一组决策序列,经过这组决策序列,能够产生最终期望求解的最优值。

1.最优子结构

最优子结构指的是,问题的最优解包含子问题的最优解。反过来说就是,我们可以通过子问题的最优解,推导出问题的最优解。把最优子结构,对应到前面定义的动态规划问题模型上,就是后面阶段的状态可以通过前面阶段的状态推导出来。

2.无后效性

无后效性有两层含义,第一层含义是,在推导后面阶段的状态的时候,我们只关心前面阶段的状态值,不关心这个状态是怎么一步一步推导出来的。第二层含义是,某阶段状态一旦确定,就不受之后阶段的决策影响。无后效性是一个非常“宽松”的要求。只要满足前面提到的动态规划问题模型,其实基本上都会满足无后效性。

3.重复子问题

不同的决策序列,到达某个相同的阶段时,可能会产生重复的状态。

4.“一个模型三个特征”实例剖析

结合一个具体的动态规划问题更能详细理解上述理论,示例问题描述如下:

假设我们有一个 n 乘以 n 的矩阵 w[n][n]。矩阵存储的都是正整数。棋子起始位置在左上角,终止位置在右下角。我们将棋子从左上角移动到右下角。每次只能向右或者向下移动一位。从左上角到右下角,会有很多不同的路径可以走。我们把每条路径经过的数字加起来看作路径的长度。那从左上角移动到右下角的最短路径长度是多少呢?

掌握动态规划,从“什么问题适合用”及“解题思路”入手

min_dist(i, j) 可以通过 min_dist(i, j-1) 和 min_dist(i-1, j) 两个状态推导出来,所以这个问题符合“最优子结构”。

min_dist(i, j) = min(min_dist(i-1,j), min_dist(i, j-1))

二,两种动态规划解题思路总结

知道了如何鉴别一个问题是否可以用动态规划来解决,接下来就是总结动态规划解决问题的一般思路。解决动态规划问题,一般有两种思路。分别叫作:状态转移表法和状态转移方程法。

1.状态转移表法

一般能用动态规划解决的问题,都可以使用回溯算法的暴力搜索解决。所以,当我们拿到问题的时候,我们可以先用简单的回溯算法解决,然后定义状态,每个状态表示一个节点,然后对应画出递归树。从递归树中,我们很容易可以看出来,是否存在重复子问题,以及重复子问题是如何产生的。以此来寻找规律,看是否能用动态规划解决。

找到重复子问题之后,接下来,我们有两种处理思路,第一种是直接用回溯加“备忘录”的方法,来避免重复子问题。从执行效率上来讲,这跟动态规划的解决思路没有差别。第二种是使用动态规划的解决方法,状态转移表法

我们先画出一个状态表。状态表一般都是二维的,所以你可以把它想象成二维数组。其中,每个状态包含三个变量,行、列、数组值。我们根据决策的先后过程,从前往后,根据递推关系,分阶段填充状态表中的每个状态。最后,我们将这个递推填表的过程,翻译成代码,就是动态规划代码了。

适合状态是二维的情况,再多维的话就不适合了,毕竟人脑不适合处理高维度的问题。

起点到终点,有很多种不同的走法,回溯算法比较适合无重复又不遗漏地穷举出所有走法,从而对比找出一个最短走法。

(1)回溯解法的 C++ 代码如下:

// leetcode64. 最小路径和. 回溯法-会超出时间限制
class Solution {
private:
    int minDist = 10000;
 void minDistBT(vector<vector<int>>& grid, int i, int j, int dist, int m, int n) {
 if (i == 0 && j == 0) dist = grid[0][0];
 if (i == m-1 && j == n-1) {
 if (dist < minDist) minDist = dist;
 return;
 }
 if (i < m-1) {
 minDistBT(grid, i + 1, j, dist + grid[i+1][j], m, n); // 向右走
 }
 if (j < n-1) {
 minDistBT(grid, i, j + 1, dist + grid[i][j+1], m, n); // 向下走
 }
 }
public:
    int minPathSum(vector<vector<int>>& grid) {
        int m = grid.size();
        int n = grid[0].size();
        int dist = 0;
 minDistBT(grid, 0, 0, dist, m, n);
 return minDist;
 }
};

有了回溯代码之后,接下来,自然要画出递归树,以此来寻找重复子问题。在递归树中,一个状态(也就是一个节点)包含三个变量 (i, j, dist),其中 i,j 分别表示行和列,dist 表示从起点到达 (i, j) 的路径长度。从图中,可以看出,尽管 (i, j, dist) 不存在重复,但是 (i, j) 重复的有很多。对于 (i, j) 重复的节点,我们只需要选择 dist 最小的节点,继续递归求解,其他节点就可以舍弃了。

掌握动态规划,从“什么问题适合用”及“解题思路”入手

(2)动态规划解法的 C++ 代码如下:

// 对应 leetcode64. 最小路径和
class Solution { // 动态规划:状态转移表法
public:
    int minPathSum(vector<vector<int>>& grid) {
        int m = grid.size();
        int n = grid[0].size();
        vector<vector<int> > states(m, vector<int>(n, 0));
 // 第一个阶段初始化
        int sum = 0;
 for(int i=0; i<n;i++){ // 初始化 states 的第一行数据
            sum += grid[0][i];
            states[0][i] = sum;
 }
        sum = 0;
 for(int j=0; j<m; j++){ // 初始化 states 的第一列数据
            sum += grid[j][0];
            states[j][0] = sum;
 }
 // 分阶段求解,下层状态的值是基于上一层状态来的
 for(int i=1; i<m; i++){
 for(int j=1; j<n; j++){
                states[i][j] = grid[i][j] + std::min(states[i-1][j],states[i][j-1]);
 }
 }
 return states[m-1][n-1];
 }
};

掌握动态规划,从“什么问题适合用”及“解题思路”入手

2.状态转移方程法

根据最优子结构,写出递归公式,也就是所谓的状态转移方程。状态转移方程,或者说递归公式是解决动态规划的关键。递归加“备忘录”的方式,将状态转移方程翻译成来 C++ 代码。

// 状态转移方程
min_dist(i, j) = w[i][j] + min(min_dist(i, j-1), min_dist(i-1, j))
// 对应 leetcode64. 最小路径和
class Solution { // 状态转移方程法
private:
    int minDist(int i, int j, vector<vector<int> >& matrix, vector<vector<int> >& mem) { // 调用minDist(n-1, n-1);
 if (i == 0 && j == 0) return matrix[0][0];
 if (mem[i][j] > 0) return mem[i][j];
        int minUp = 10000;
 if (i - 1 >= 0) minUp = minDist(i - 1, j, matrix, mem);
        int minLeft = 10000;
 if (j - 1 >= 0) minLeft = minDist(i, j - 1, matrix, mem);
        int currMinDist = matrix[i][j] + std::min(minUp, minLeft);
        mem[i][j] = currMinDist;
 return currMinDist;
 }
public:
    int minPathSum(vector<vector<int>>& grid) {
        int m = grid.size();
        int n = grid[0].size();
        vector<vector<int> > mem(m, vector<int>(n, -1));
 return minDist(m - 1, n - 1, grid, mem);
 }
};

掌握动态规划,从“什么问题适合用”及“解题思路”入手

三,四种算法比较分析

如果将这四种算法思想分一下类,那贪心、回溯、动态规划可以归为一类,而分治单独可以作为一类,因为它跟其他三个都不大一样。为什么这么说呢?因为前三个算法解决问题的模型,都可以抽象成多阶段决策最优解模型,而分治算法解决的问题尽管大部分也是最优解问题,但是,大部分都不能抽象成多阶段决策模型。

尽管动态规划比回溯算法高效,但是,并不是所有问题,都可以用动态规划来解决。能用动态规划解决的问题,需要满足三个特征,最优子结构、无后效性和重复子问题。在重复子问题这一点上,动态规划和分治算法的区分非常明显。分治算法要求分割成的子问题,不能有重复子问题,而动态规划正好相反,动态规划之所以高效,就是因为回溯算法实现中存在大量的重复子问题。

贪心算法实际上是动态规划算法的一种特殊情况。它解决问题起来更加高效,代码实现也更加简洁。不过,它可以解决的问题也更加有限。它能解决的问题需要满足三个条件,最优子结构、无后效性和贪心选择性(这里我们不怎么强调重复子问题)。其中,最优子结构、无后效性跟动态规划中的无异。“贪心选择性”的意思是,通过局部最优的选择,能产生全局的最优选择。每一个阶段,我们都选择当前看起来最优的决策,所有阶段的决策完成之后,最终由这些局部最优解构成全局最优解。

四,内容总结

什么样的问题适合用动态规划解决?这些问题可以总结概括为“一个模型三个特征”。其中,“一个模型”指的是,问题可以抽象成分阶段决策最优解模型。“三个特征”指的是最优子结构、无后效性和重复子问题。

哪两种动态规划的解题思路?它们分别是状态转移表法和状态转移方程法。其中,状态转移表法解题思路大致可以概括为,回溯算法实现 - 定义状态 - 画递归树 - 找重复子问题 - 画状态转移表 - 根据递推关系填表 - 将填表过程翻译成代码。状态转移方程法的大致思路可以概括为,找最优子结构 - 写状态转移方程 - 将状态转移方程翻译成代码。

练习题

假设我们有几种不同币值的硬币 v1,v2,……,vn(单位是元)。如果我们要支付 w 元,求最少需要多少个硬币。比如,我们有 3 种不同的硬币,1 元、3 元、5 元,我们要支付 9 元,最少需要 3 个硬币(3 个 3 元的硬币)。

参考资料

动态规划理论:一篇文章带你彻底搞懂最优子结构、无后效性和重复子问题

 

点击关注,第一时间了解华为云新鲜技术~

原文链接:https://www.cnblogs.com/huaweiyun/p/17348825.html

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:掌握动态规划,从“什么问题适合用”及“解题思路”入手 - Python技术站

(0)
上一篇 2023年4月23日
下一篇 2023年4月24日

相关文章

  • 支撑矢量机SVM 机器学习基石–学习笔记02–Hard Dual SVM

         首先,回顾一下SVM问题的定义,如下:       线性约束很烦,不方便优化,是否有一种方法可以将线性约束放到优化问题本身,这样就可以无拘无束的优化,而不用考虑线性约束了。其对应的拉格朗日对偶形式为:          最终的优化结果保证离超平面远的点的权重为0。           经过上面的对偶变化,下面来一步一步的简化我们的原始问题,    …

    机器学习 2023年4月13日
    00
  • 【机器学习】1 监督学习应用与梯度下降

    监督学习 简单来说监督学习模型如图所示 其中 x是输入变量 又叫特征向量  y是输出变量 又叫目标向量 通常的我们用(x,y)表示一个样本  而第i个样本 用(x(i),y(i))表示 h是输出函数  监督学习的任务是学习一个模型,使模型能够对任意的输入,做出很好的预测。 习惯的样本训练数目用m表示 梯度下降算法 h(x) = Θ0 +Θ1×1+…+Θi…

    机器学习 2023年4月10日
    00
  • 循环神经网络,LSTM,GRU

    RNN是一类用于处理序列数据的神经网络 序列数据:时间学列数据是指在不同时间点上收集到的数据,这类数据反映了某一事物、现象等随时间的变化状态或程度。 基础的神经网络只在层与层之间建立了权连接,RNN最大的不同之处就是在层之间的神经元之间也建立的权连接。 上图是一个标准的RNN结构图,图中每个箭头代表做一次变换,也就是说箭头连接带有权值。左侧是折叠起来的样子,…

    2023年4月8日
    00
  • 四、循环神经网络

    1.1 循环神经网络与应用 1.2 循环神经网络模型 1.3 BPTT算法 1.4 图像描述 1.5 LSTM(Long Short Time Memory) 1.6 LSTM为什么不会比RNN更容易出现梯度消失 1.7 LSTM的变体 1.7.1 让门层也接收细胞状态的输入 1.7.2 通过使用couple忘记和输入门 1.7.3 GRU(Gated Re…

    循环神经网络 2023年4月7日
    00
  • pytorch官网上两个例程

    caffe用起来太笨重了,最近转到pytorch,用起来实在不要太方便,上手也非常快,这里贴一下pytorch官网上的两个小例程,掌握一下它的用法:   例程一:利用nn  这个module构建网络,实现一个图像分类的小功能; 链接:http://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.ht…

    PyTorch 2023年4月8日
    00
  • pytorch中tensorboardX进行可视化

    环境依赖: pytorch   0.4以上 tensorboardX:   pip install tensorboardX、pip install tensorflow   在项目代码中加入tensorboardX的记录代码,生成文件并返回到浏览器中显示可视化结果。 官方示例:   默认设置是在根目录下生成一个runs文件夹,里面存储summary的信息。…

    2023年4月7日
    00
  • FasterRCNN目标检测实践纪实

      首先声明参考博客:https://blog.csdn.net/beyond_xnsx/article/details/79771690?tdsourcetag=s_pcqq_aiomsg 实践过程主线参考这篇博客,相应地方进行了变通。接下来记载我的实践过程。     一、GPU版的TensorFlow的安装 准备工作: 笔者电脑是Windows10企业版…

    2023年4月8日
    00
  • Convolutional neural network (卷积神经网络)

    我们都知道CNN常常被用在影像处理上,当然也可以用一般的neural network来做影像处理,不一定要用CNN。比如说你想要做影像的分类, 那么你就是training一个neural network,input一张图片,那么你就把这张图片表示成里面的pixel,也就是很长很长的vector。output就是(假如你有1000个类别,output就是100…

    2023年4月6日
    00
合作推广
合作推广
分享本页
返回顶部