使用 Python 获取 Linux 系统信息的代码

获取Linux系统信息是一个很常用的操作,因为我们需要了解我们使用的操作系统的状态和配置。下面是使用Python获取Linux系统信息的完整攻略:

开始

首先,我们需要在Linux系统上安装Python。如果你的系统上已经安装了Python,则可以直接跳过这一步。如果你的系统没有安装Python,请使用以下命令安装:

sudo apt-get update
sudo apt-get install python3.8

在确认Python安装后,我们就可以开始使用Python获取Linux系统信息了。

获取系统信息的方法

Python中有很多库可以用来获取Linux系统的信息。下面是两个示例:

示例1:使用psutil库

psutil是一个跨平台的Python库,用于获取系统信息。可以使用以下命令安装它:

pip install psutil

使用psutil获取Linux系统的CPU、内存和磁盘信息很容易,只需要使用以下代码:

import psutil

# 获取CPU信息
cpu_percent = psutil.cpu_percent(interval=1)

# 获取内存信息
vm = psutil.virtual_memory()

# 获取硬盘信息
disk = psutil.disk_usage('/')

示例2:使用os库

os是Python的标准库之一,用于提供操作系统相关的函数。我们可以使用它来获取Linux系统的一些信息,例如当前工作目录、进程ID等。下面是一个获取当前工作目录的示例:

import os

# 获取当前工作目录
path = os.getcwd()

结论

使用Python获取Linux系统信息是一件非常简单的事情。我们可以选择使用已有的库,例如psutil和os,也可以使用其他第三方库。只要选择合适的方法,我们就可以轻松获取Linux系统的各类信息。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:使用 Python 获取 Linux 系统信息的代码 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • Python pandas 的索引方式 data.loc[],data[][]示例详解

    Python pandas 的索引方式 data.loc[],data[][]示例详解 背景 在使用Python pandas的过程中,我们常常需要对数据进行索引、筛选、修改等操作。其中,使用data.loc[]和data[][]进行索引操作是比较常见和灵活的方式。接下来,我们将详细讲解这两种索引方式的使用方法和示例。 data.loc[]的使用 data.…

    python 2023年5月14日
    00
  • 如何在Pandas中使用GroupBy对负值和正值进行求和

    使用Pandas中的GroupBy函数可以方便地对数据进行分组并进行聚合统计,如对于负值和正值的分组求和,可以按照以下步骤进行操作: 创建示例数据 首先,我们需要创建一些示例数据来演示GroupBy的用法。在本示例中,我们使用如下的数据: import numpy as np import pandas as pd data = {‘Value’: [1, …

    python-answer 2023年3月27日
    00
  • python 用pandas实现数据透视表功能

    当我们需要对数据进行汇总和分组统计时,数据透视表是一个非常方便的工具。在Python中,使用pandas库可以很方便地实现数据透视表功能。下面是详细的攻略: 步骤一:导入pandas库 首先需要导入pandas库: import pandas as pd 步骤二:读取数据 接下来需要读取数据。如果数据已经存放在文件中,可以使用pandas的read_csv方…

    python 2023年5月14日
    00
  • pandas和spark dataframe互相转换实例详解

    我将为您详细讲解“pandas和sparkdataframe互相转换实例详解”的完整攻略。 什么是Pandas和Spark DataFrame Pandas DataFrame:Pandas是一个基于Numpy的库,提供了高效的数据分析工具,其中之一就是DataFrame。 Pandas DataFrame是一个基于行和列的二维表格数据结构,每一列可以是不同…

    python 2023年5月14日
    00
  • Pandas如何对Categorical类型字段数据统计实战案例

    Pandas是Python中一个功能强大的数据分析库,其中对于Categorical类型字段的数据统计也提供了非常便利的支持。下面我们将详细讲解如何使用Pandas进行Categorical类型字段的数据统计,包括以下内容: Categorical类型字段的基本介绍 Categorical类型字段的创建和转换 Categorical类型字段的数据统计 案例分…

    python 2023年5月14日
    00
  • Pandas_cum累积计算和rolling滚动计算的用法详解

    Pandas_cum累积计算和rolling滚动计算的用法详解 什么是Pandas_cum累积计算 Pandas_cum累积计算可以帮助我们计算序列的累计值。cumsum()是最常用和最简单的累计计算操作,它按照序列的原始顺序计算元素的累计和,使用方法如下: import pandas as pd data = pd.Series([1, 2, 3, 4, …

    python 2023年5月14日
    00
  • Python中的Pandas分析

    Pandas是Python中一款流行的数据分析工具,它提供了高效的数据结构和数据分析工具,使得数据分析变得更加简单和可靠。Pandas主要包含两种数据结构:Series和DataFrame。 Series Series是Pandas中的一种一维数组,可以看作是数组和字典的混合体。第一列是索引,第二列是值。Series可以使用多种方式构建: import pa…

    python-answer 2023年3月27日
    00
  • 简单介绍Python中的JSON模块

    当我们想将数据以一种易于读取和存储的方式进行传输时,我们通常会使用JSON数据格式。Python中的JSON模块为我们提供了便捷的方法来操纵JSON数据。 什么是JSON模块 JSON模块是提供了编码和解码JSON数据的Python标准库。该模块提供了四个方法:dump(), dumps(), load()和loads()。 dump(obj, fp, *,…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部