在Pandas DataFrame中把一个文本列分成两列

Pandas DataFrame中把一个文本列分成两列,可以使用str.split()方法,将文本根据指定的分隔符进行分割。接下来,通过以下步骤来详细讲解:

步骤一:导入相关库

import pandas as pd

步骤二:创建DataFrame数据

data = {
    'text': [
        'John Smith, 25, Male', 
        'Jane Doe, 30, Female', 
        'Bob Johnson, 45, Male'
    ]
}
df = pd.DataFrame(data)

步骤三:使用str.split()方法进行分割,并新增两列

new_df = df['text'].str.split(',', expand=True)
new_df.columns = ['Name', 'Age', 'Gender']
df = pd.concat([df, new_df], axis=1)
df = df.drop(columns=['text'])

解释:

  • 使用df['text'].str.split(',', expand=True)对DataFrame进行分隔操作,生成一个包含三列的新DataFrame。
  • 使用new_df.columns = ['Name', 'Age', 'Gender']为新的DataFrame列名赋值。
  • 使用pd.concat()方法把原有DataFrame与新的DataFrame合并成一个新的DataFrame。
  • 使用df = df.drop(columns=['text'])删除原有的一列。

步骤四:打印结果

最后,用以下代码来打印结果:

print(df)

输出结果如下:

      Name  Age   Gender
0  John Smith   25     Male
1    Jane Doe   30   Female
2  Bob Johnson   45     Male

是的,以上就是在Pandas DataFrame中把一个文本列分成两列的完整攻略,其中包含了详细的步骤和示例。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:在Pandas DataFrame中把一个文本列分成两列 - Python技术站

(1)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • pandas 对每一列数据进行标准化的方法

    要对 Pandas 的数据进行标准化,可以使用 sklearn 库中的 StandardScaler 模块。这个模块可以对每一列的数据进行标准化处理,使得每个属性的平均值为 0,方差为 1。 下面是具体步骤: 1.加载Pandas和Sklearn库 首先,我们需要加载 Pandas 和 Sklearn 库,并且读取数据,将其转换成 DataFrame 类型 …

    python 2023年5月14日
    00
  • 在Pandas中折叠多个列

    在Pandas中,我们可以通过折叠(或叫转换)多个列,将列索引转换为行索引。这可能很有用,当我们需要汇总或聚合数据时,或者想要显示数据的多个方面时。 下面是一个例子,说明如何折叠多个列: 首先,我们创建一个示例DataFrame: import pandas as pd data = {‘Name’: [‘Jerry’, ‘Tom’, ‘Micky’, ‘M…

    python-answer 2023年3月27日
    00
  • python pandas移动窗口函数rolling的用法

    Python Pandas移动窗口函数rolling的用法 什么是rolling函数? rolling函数是Python Pandas的函数之一,用于执行基于滚动窗口的计算操作。它能够在一个类似于移动的小窗口内执行操作,并且自动相对于数据的那个坐标移动。 移动窗口函数可以让我们计算汇总和转换数据的统计量,比如: 移动平均值 移动标准差 移动总和 语法 rol…

    python 2023年5月14日
    00
  • Spark DataFrame和Pandas DataFrame的区别

    Spark DataFrame和Pandas DataFrame都是用来处理数据的工具,但是它们有以下几个方面的不同。 编程语言和计算引擎 Spark DataFrame是使用Scala、Java或Python语言编写的,并由Spark计算引擎执行计算任务。Spark DataFrame被设计用于处理大量数据,并充分利用了分布式计算。 Pandas Data…

    python-answer 2023年3月27日
    00
  • python中DataFrame数据合并merge()和concat()方法详解

    Python中DataFrame数据合并Merge()和concat()方法详解 在数据分析中,经常需要将多个数据源中的数据合并到一起,这就需要涉及到数据合并的相关操作。Python中Pandas库提供了两个主要的方法可以用于数据合并:merge()和concat()。 Merge()方法详解 merge()方法可以将多个数据集(DataFrame)按照一些…

    python 2023年5月14日
    00
  • 选择两个日期之间的Pandas数据框架行

    为了详细讲解选择两个日期之间的Pandas数据框架行的完整攻略,我将把这个过程拆分成以下四个步骤: 1.将日期字符串转换为Pandas日期时间格式2.使用布尔索引从数据框中选择两个日期之间的行3.使用.loc、.iloc或.ix方法从数据框中选择两个日期之间的行4.使用.between_time方法选择两个或多个特定的时区之间的行 下面将详细介绍每一步的实现…

    python-answer 2023年3月27日
    00
  • 获取Pandas DataFrame的列的数据类型

    获取Pandas DataFrame的列的数据类型可以通过以下步骤完成: Step 1: 导入 Pandas 在开始之前,首先需要导入 Pandas 库和数据集。如果您还未安装 Pandas 库,请使用以下代码安装: !pip install pandas Step 2: 创建 DataFrame 使用 Pandas 数据库中的 read_csv() 函数导…

    python-answer 2023年3月27日
    00
  • Pandas提取数据的三种方式

    下面是Pandas提取数据的三种方式的完整攻略,共包含三种方法: 1. 按行、按列提取数据方法 按行提取数据 Pandas可以通过 loc 和 iloc 方法按行提取数据。 其中,loc 方法使用标签来定位数据,iloc 方法使用索引来定位数据。以下是示例代码: import pandas as pd # 使用pandas读取本地csv文件 df = pd.…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部