Pandas中不同类型的连接

Pandas中,连接是将不同的数据集合并成一个更大的数据集的实用操作。Pandas提供了多个不同类型的连接方法,包括内连接、左连接、右连接和外连接。下面逐一进行详细讲解。

内连接

内连接是连接操作中最常见的一种,它只保留两个数据集中共有的部分,即取两个数据集的共同部分。在Pandas中,使用merge()方法实现内连接。参数how='inner'表示使用内连接。

import pandas as pd

df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], 'value': [1, 2, 3, 4]})
df2 = pd.DataFrame({'key': ['B', 'D', 'E', 'F'], 'value': [5, 6, 7, 8]})

result = pd.merge(df1, df2, on='key', how='inner')
print(result)

上述代码的输出结果为:

  key  value_x  value_y
0   B        2        5
1   D        4        6

左连接

左连接返回两个数据集中左边数据集的所有行以及右边数据中与左边数据集指定列所对应的行。在Pandas中,使用merge()方法实现左连接。参数how='left'表示使用左连接。

import pandas as pd

df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], 'value': [1, 2, 3, 4]})
df2 = pd.DataFrame({'key': ['B', 'D', 'E', 'F'], 'value': [5, 6, 7, 8]})

result = pd.merge(df1, df2, on='key', how='left')
print(result)

上述代码的输出结果为:

  key  value_x  value_y
0   A        1      NaN
1   B        2      5.0
2   C        3      NaN
3   D        4      6.0

右连接

右连接是左连接的逆操作,返回两个数据集中右边数据集的所有行以及左边数据中与右边数据集指定列所对应的行。在Pandas中,使用merge()方法实现右连接。参数how='right'表示使用右连接。

import pandas as pd

df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], 'value': [1, 2, 3, 4]})
df2 = pd.DataFrame({'key': ['B', 'D', 'E', 'F'], 'value': [5, 6, 7, 8]})

result = pd.merge(df1, df2, on='key', how='right')
print(result)

上述代码的输出结果为:

  key  value_x  value_y
0   B      2.0        5
1   D      4.0        6
2   E      NaN        7
3   F      NaN        8

外连接

外连接返回两个数据集中所有的行和列,对于左边和右边没有对应行和列的位置,填充NaN值。在Pandas中,使用merge()方法实现外连接。参数how='outer'表示使用外连接。

import pandas as pd

df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], 'value': [1, 2, 3, 4]})
df2 = pd.DataFrame({'key': ['B', 'D', 'E', 'F'], 'value': [5, 6, 7, 8]})

result = pd.merge(df1, df2, on='key', how='outer')
print(result)

上述代码的输出结果为:

  key  value_x  value_y
0   A      1.0      NaN
1   B      2.0      5.0
2   C      3.0      NaN
3   D      4.0      6.0
4   E      NaN      7.0
5   F      NaN      8.0

以上是Pandas中不同类型的连接的详细讲解。可以根据需要选择合适的连接方式将不同的数据集合并成一个更大的数据集。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pandas中不同类型的连接 - Python技术站

(1)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • 如何修复:No module named pandas

    No module named pandas提示表示Python代码在执行时缺少了pandas库。要修复该问题,可以按照以下步骤进行: 1. 确认是否已经安装了pandas库 在终端或命令行中,输入以下命令可以查看是否已安装pandas库: pip show pandas 如果能够成功显示pandas库的信息,那么说明该库已经被安装。否则需要进入第二步。 2…

    python-answer 2023年3月27日
    00
  • python 利用panda 实现列联表(交叉表)

    下面我为您详细讲解“python利用panda实现列联表(交叉表)”的完整攻略。 1. pandas中列联表的概念 列联表是一种将两个或多个分类变量交叉分类后形成的表格,用于展示它们之间的关系。pandas中列联表的实现就是通过数据透视表来实现的,它可以将一张表中的一些列作为纵坐标,将另外一些列作为横坐标,将数据值作为交叉点所显示的值,从而实现对某些分类变量…

    python 2023年5月14日
    00
  • 如何在Pandas数据框架中减去两列

    可以通过Pandas的数据框架中的列进行数学运算,例如减法。 以下是在Pandas数据框架中减去两列的完整攻略: 导入Pandas模块并读取数据 “`python import pandas as pd # 读取数据文件 df = pd.read_csv(‘example.csv’) “` 确定要减去的两列 python # 假设我们要减去’salary…

    python-answer 2023年3月27日
    00
  • 对pandas的dataframe绘图并保存的实现方法

    对于pandas的dataframe绘图并保存,可以通过matplotlib库完成,具体步骤如下: 步骤一:导入相关库 首先需要导入需要的库,其中pandas库用于数据处理,matplotlib库用于绘图,os库用于操作系统相关的操作(例如文件读写)。 import pandas as pd import matplotlib.pyplot as plt i…

    python 2023年5月14日
    00
  • 基于所有或选定的列,在数据框架中查找重复的行

    在数据分析的过程中,有时候需要查找数据框架中的重复行,这可以通过duplicated()函数来实现。在该函数中可以选择把所有的列或指定的列作为判断重复的依据。 具体步骤如下: 读取数据集 首先,需要读取需要处理的数据集,并将其存储在一个变量中。例如,我们可以使用read.csv()函数读取一个CSV文件: df <- read.csv("da…

    python-answer 2023年3月27日
    00
  • Python中用append()连接后多出一列Unnamed的解决

    当使用Python的pandas库将多个DataFrame对象合并为一个时,经常会遇到出现“Unnamed”列的问题。这个问题通常是由于DataFrame对象在合并过程中没有正确处理索引或列名造成的。解决这个问题的方法是使用合适的列名和索引,同时避免使用多个DataFrame对象拼接时出现重复的列名和索引。 以下是解决这个问题的攻略: 方案一:明确设置列名和…

    python 2023年5月14日
    00
  • pandas检查和填充缺失值的N种方法总结

    标题:Pandas检查和填充缺失值的N种方法总结 1.前言 在处理数据的过程中,缺失值经常会引起我们的注意。当我们得到一个数据集时,经常需要检查数据集中是否存在缺失值,并对缺失值进行处理,以保证数据分析结果的准确性。Pandas是一个功能强大的数据处理库,提供了许多方法来检查和填充缺失值。 2.检查缺失值 Pandas提供了一些方法来检查数据集中的缺失值。 …

    python 2023年5月14日
    00
  • Pandas中的数据结构

    Pandas是一个数据处理工具,其核心模块是pandas库。在Pandas中,有两种基础的数据结构:Series和DataFrame。 Series Series是一种类似于一维数组的数据结构,它由一组数据和一组相关的标签组成,我们可以通过索引来访问数据。Series的标签又叫索引,它们可以是整数、浮点数或字符串等类型。 下面是一个创建Series的例子: …

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部