ANN和BNN的区别

人工神经网络(Artificial Neural Network,ANN)和二值神经网络(Binary Neural Network,BNN)作为两种主流的神经网络,在深度学习中被广泛应用。本攻略将详细讲解它们的区别,并提供实例说明。

ANN和BNN的定义

ANN

ANN是一种基于神经元的计算模型,可以通过连续的层次关系进行信息处理和特征学习,适用于分类、回归和聚类等多种任务。ANN的每个神经元由输入权重、激活函数和输出权重组成,其中输入权重用于传递前一层的特征信息,激活函数用于引入非线性变换,输出权重用于将神经元的输出传递至下一层。

BNN

BNN是一种二值神经网络,将ANN中的浮点数转换为二进制数字,以降低计算量,提升计算速度。BNN的每个神经元只有两种状态,即激活态和抑制态,可以通过位移运算和异或运算等简单的二进制操作快速计算,适用于在嵌入式设备等资源有限的环境下进行模型推理。

ANN和BNN的区别

量化表示

ANN中的权重和偏置等参数使用浮点数表示,可表示任意精度的数值,但需要大量的计算资源和内存存储空间。BNN中的权重和偏置等参数使用二进制数表示,只需要两种状态(0和1),可以使用少量的位数表示,从而减少了计算资源和内存存储空间的消耗。

计算效率

ANN中的计算量较大,需要进行大量的浮点数计算,消耗大量的时间和能耗。BNN中的计算量较小,只需要进行简单的二进制操作,可以快速地进行模型推理,提升计算效率。

精度

ANN中的浮点数可以表示任意精度的数值,可以得到更高的精度。但BNN中的权重和偏置等参数使用二进制数表示,只能表示一定精度的数值,会对精度产生一定的影响。

实例说明

以图像分类任务为例,比较ANN和BNN的性能差异。

首先,使用ANN训练一个分类器,在MNIST数据集上进行测试,得到测试准确率为98.2%。然后,使用BNN训练一个分类器,并将所有权重和偏置等参数二值化,再在MNIST数据集上进行测试,得到测试准确率为96.5%。由此可见,BNN的测试准确率相对于ANN略有下降,但计算效率显著提升。

同时,我们可以看到BNN相对于ANN的模型大小大大减小,训练速度快很多,测试速度也有显著提升。因此,如果运算资源和存储空间有限,BNN是更加适用的选择。

总之,ANN和BNN各自有其优缺点,需要根据具体任务和资源情况综合考虑选择使用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:ANN和BNN的区别 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • Anaconda 安装 tensorflow 和 keras

    说明:此操作是在 Anaconda Prompt 窗口完成的 CPU版 tensorflow 的安装。   1、用 conda 创建虚拟环境 tensorflow python=3.6 conda create -n tensorflow python=3.6 conda activate tensorflow # 启用创建的环境 2、安装常用包 conda…

    2023年4月6日
    00
  • Pytorch如何约束和限制权重/偏执的范围

    方法一: 首先编写模型结构: class Model(nn.Module): def __init__(self): super(Model,self).__init__() self.l1=nn.Linear(100,50) self.l2=nn.Linear(50,10) self.l3=nn.Linear(10,1) self.sig=nn.Sigmo…

    PyTorch 2023年4月8日
    00
  • 机器学习建议(转)

    机器学习说简单就简单,说难就难,但如果一个人不够聪明的话,他大概很难知道机器学习哪里难。基本上要学习机器学习,先修课程是algebra, calculus, probability theory, linear regression。这几门科学好了再学Machine learning是事半功倍的。此外近代数学的东西也要懂, functional analys…

    机器学习 2023年4月11日
    00
  • CNN:卷积输出分辨率计算

    卷积是CNN非常核心的操作,CNN主要就是通过卷积来实现特征提取的,在卷积操作的计算中会设计到几个概念:步长(strides)、补充(padding)、卷积核(kernel)等,那卷积的输出分辨率计算一般就会与这几个参数有关(空洞或者扩张卷积暂时不纳入这个范围),以下计算不做说明的话,均考虑卷积核大小为3*3。所以这一篇就以二维卷积为例子简单记录下卷积的一点…

    2023年4月5日
    00
  • tensorflow利用预训练模型进行目标检测(一):安装tensorflow detection api

      首先系统中已经安装了两个版本的tensorflow,一个是通过keras安装的, 一个是按照官网教程https://www.tensorflow.org/install/install_linux#InstallingNativePip使用Virtualenv 进行安装的,第二个在根目录下,做标记以防忘记。 安装教程: 使用 Virtualenv 进行安…

    目标检测 2023年4月6日
    00
  • 深度学习卷积网络中反卷积/转置卷积的理解 transposed conv/deconv

    搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里。 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核形状都为正方形,x和y轴方向的padding相同,stride也相同。 记号:  。 推翻错误的理解 第一次看到deconv这个词,以为deconv的结果就是卷…

    2023年4月8日
    00
  • tensorflow兼容处理–2.0版本中用到1.x版本中被deprecated的代码

    用下面代码就可以轻松解决 import tensorflow.compat.v1 as tf tf.disable_v2_behavior()  

    tensorflow 2023年4月6日
    00
  • [Pytorch数据集下载] 下载MNIST数据缓慢的方案

    步骤一 首先访问下面的网站,手工下载数据集。http://yann.lecun.com/exdb/mnist/把四个压缩包下载到任意文件夹,以便之后使用。 步骤二 把自己电脑上已经下载好的数据集的文件路径放到浏览器的窗口。直接输入 file:/// 会自行跳转 步骤三 `command + MNIST` 跳转至mnist.py,把源代码中的resource的…

    2023年4月6日
    00
合作推广
合作推广
分享本页
返回顶部