Pandas
-
Pandas 执行类似SQL操作的4种方法
Pandas是数据处理中不可或缺的工具之一,除了数据的读写、清洗、转换等基本操作,Pandas还支持一些类似SQL的操作,而这些操作对于熟悉SQL的用户来说,极大地方便了数据的操作和分析。 Pandas提供的SQL类操作主要包括以下几种方法: merge: 将两个DataFrame按照指定的列进行合并(类似于SQL中的join操作)。 groupby: 对D…
-
详解Pandas分层索引的创建、使用方法
Pandas分层索引是一种在DataFrame和Series中使用的索引技术,能够处理多维数据,使得对于数据的分组和展示更加方便和灵活。在分层索引中,每层索引都是针对数据集中的某个特定维度的,这些层次索引可以根据需要自由组合,形成多级索引,从而满足数据分析任务的细粒度需求。 Pandas分层索引的创建方式 1.通过列表创建分层索引: import panda…
-
Pandas使用的注意事项
Pandas 基于 NumPy 构建,它遵循 NumPy 设定的一些规则。因此,当您在使用 Pandas 时,需要额外留意一些事项,避免出现一些不必要的错误。 索引 Pandas有两种主要的索引机制:整数和标签索引,需要非常注意索引的使用。 整数索引:通过整数索引进行访问数据,如果未指定索引,Pandas将默认生成一个整数索引,但当使用整数索引时,需要特别小…
-
Pandas设置索引、重置索引方法详解
在pandas中,索引可以看做是数据的“标签”,用于标识数据表中每个数据的位置。pandas提供了设置索引和重置索引的功能,以方便用户对数据进行排序、筛选等操作。 首先,通过以下代码创建一个示例DataFrame: import pandas as pd data = {'name': ['Alice', '…
-
详解Pandas随机抽样(sample)使用方法
Pandas中的sample()函数可以从数据集中随机抽取行或列,可以用于数据集的随机采样、创建数据集的随机子集、模型评估等场景。下面我们来详细介绍一下sample()函数的用法。 首先,sample()函数有以下几个参数: n: 抽取的行数或列数。 frac: 抽取的行数或列数相对于数据集的比例,范围在0到1之间。 replace: 是否允许重复抽取,默认…
-
Pandas读取文件数据常用的5种方法
当使用 Pandas 做数据分析的时,需要读取事先准备好的数据集,这是做数据分析的第一步。 Panda 提供了很多读取数据的方法: pd.read_csv():读取CSV文件 pd.read_excel():读取Excel文件 pd.read_sql():读取SQL数据库中的数据 pd.read_json():读取JSON文件 pd.read_html():…
-
Pandas绘图方法(plot)详解
Pandas 在数据可视化方面有着较为广泛的应用,Pandas 的 plot() 方法可以用来绘制各种类型的统计图表,包括线图、散点图、柱状图、饼图、密度图等等。 plot() 方法是基于matplotlib库构建的,因此具有很高的灵活性和可定制性,可以通过参数设置对图表进行调整。plot()方法可以直接作用于Series、DataFrame和GroupBy…
-
Pandas分类对象(Categorical)详解
Pandas分类对象是什么? 在 Pandas 中,分类对象(Categorical)是一种特殊的数据类型,它表示有限且固定数量的可能值的数据。分类对象主要用于存储和处理重复值的数据,并且在某些情况下可以提高性能和减少内存使用。 Pandas 的分类对象具有以下特点: 类别是有限的,且固定不变的。例如,在一个具有“男”、“女”两种可能性的列中,类别是固定的。…
-
详解Pandas数据重采样(resample)的3种使用方法
Pandas中的resample方法用于对时间序列数据进行重采样,可以将数据从一个时间频率转换为另一个时间频率,比如将日频率的数据转换为月频率的数据。 resample的语法格式如下: DataFrame.resample(rule, axis=0, closed=None, label=None, convention='start',…
-
详解Padans Timedelta时间差的使用方法
在 Pandas 中,时间差指的是两个日期时间之间的差值。Pandas 提供了 Timedelta 类型来表示时间差。Timedelta 可以支持多种时间单位,例如天、小时、分钟、秒等。 Timedelta 对象可以通过减法来获得两个日期时间之间的差值,例如: import pandas as pd # 创建两个 Pandas Series 对象 s1 = …