数据科学
-
NumPy 数组的形状和维度详解
NumPy中数组的形状和维度是什么? 形状和维度是NumPy数组的一个非常重要的概念,它们描述了NumPy数组中元素的排列方式。 其中: 形状描述的是数组中每个维度的大小,以一个元组形式表示。例如,一个二维数组的形状可以表示为(3,4),表示它有3行和4列。 维度是描述的是数组中的轴数。例如,一个一维数组有一个轴,一个二维数组有两个轴,一个三维数组有三个轴,…
-
NumPy操作数组最常用的7个方法(组合、分裂、运算、广播…)
NumPy数组支持许多常用的操作方法,包括索引、切片、聚合函数、广播等等。在本文章中将会介绍一些Numpy数组常用的操作方法。 NumPy 数组切片 可以使用切片来访问NumPy数组中的子数组。例如: import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(a[0:2,…
-
NumPy 创建数组最常用的3种方式
NumPy是一个开源的Python科学计算库,主要用于处理多维数组、矩阵以及其他高维数据。在NumPy中,最核心的数据结构是ndarray,它是一种多维数组,可以存储任意类型的数据。在本篇文章中,我们将详细介绍NumPy数组的创建和操作方法。 Numpy使用array函数直接创建数组 可以使用NumPy中的array函数直接创建一个数组。在调用array函数…
-
Numpy数组的优点和应用领域
众所周知,Numpy是Python科学计算中最广泛使用的一个库,主要用于处理多维数组和矩阵计算。 而Numpy中的数组则是NumPy最重要的数据结构之一,具体来说,它有以下优点: 快速而高效的计算:Numpy数组使用C语言编写,这使得数组中的运算更加快速、高效。在处理大量数据时,Numpy数组比Python原生的列表(list)和元组(tuple)更快,因为…
-
Numpy的核心:数组的定义与特性
我们已经知道,NumPy是Python中用于科学计算的一个基础库,它提供了一种高效的多维数组对象,使我们可以方便地存储和处理大型的数据集。 而在NumPy中,数组更是核心中的核心,所有的科学计算都是围绕着数组进行的,所以学习NumPy中的数组是非常重要的。 在NumPy中,数组被称为ndarray(N-dimensional array),它是一个由同种数据…
-
Numpy中的数组和向量有什么区别?
在数学上,向量是一个具有大小和方向的量,通常用于表示物理量或几何量,例如速度、力、位置等。而数组是一组按顺序排列的值的集合,通常用于存储数值数据,例如矩阵、图像等。 在Numpy中,数组(array)是一种多维的容器,可以容纳不同类型的数据。而向量(vector)则是一种特殊的数组,只能容纳单一类型的数据,通常是数值类型。 具体来说,向量是一个一维数组,通常…
-
NumPy多维数组ndarray对象详解
NumPy中最重要的对象是ndarray(N-dimensional array,多维数组)。ndarray是一个由同类型元素构成的多维数组,可以看作是Python内置的list对象的扩展,其优点在于: ndarray支持并行化运算,对于科学计算的大规模数据处理有很大的优势; ndarray支持矢量化运算,避免了Python循环语句慢的缺点; ndarray…
-
NumPy的下载与安装
NumPy 是 Python 的第三方扩展包,并没有包含在 Python 标准库中,所以您需要单独安装它。 本文将介绍在 Windows 、Linux、MacOSX系统安装NumPy的方法。 在安装 NumPy 之前,需要先安装 Python 解释器。如果你尚未安装 Python,请前往官方网站 https://www.python.org/download…
-
NumPy是什么?能用来做什么?
NumPy是Python中用于科学计算和数据分析的一个开源扩展库,它包含了一个强大的N维数组对象和一组函数,可以用来处理各种数组和矩阵运算。NumPy的核心是ndarray(多维数组)对象,它具有快速的数值运算和数组操作能力,可以轻松地进行向量化计算和广播操作。 NumPy可以支持广泛的数学和科学计算,包括线性代数、傅里叶变换、统计分析、随机模拟等。NumP…
-
2023年7大最热门的数据可视化框架!
大数据可视化是指将庞大的数据转化为易于理解和使用的可视化图表和图形的过程。随着大数据技术的发展,大数据可视化已经成为了数据分析和决策制定中不可或缺的一部分。 以下是2023年最热门的7种大数据可视化技术框架: Tableau Tableau是目前最流行的商业化数据可视化工具之一,拥有用户友好的界面和丰富的图表库。它支持从各种数据源中提取数据,并生成交互式、实…