C语言求连续最大子数组和的方法

C语言求连续最大子数组和,是一个经典的算法问题,通常可以有多种不同的实现方式。下面,我将分享一种基于动态规划的解法,并且给出两个示例以帮助解释。

1. 动态规划法

动态规划是一种常用的解决优化问题的算法。对于本题,基本思路是对于前n个数,分别计算以第i个数结尾的最大子数组和,然后再取其中的最大值。

以数组nums = {1, -2, 3, 10, -4, 7, 2, -5}为例,设max_sum[i]表示以第i个数结尾的最大子数组和,则有如下动态规划方程:

  • max_sum[0] = nums[0];
  • max_sum[i] = max(nums[i], max_sum[i-1]+nums[i]), (1<=i<n)

对于上面的式子,第i个数结尾的最大子数组和,可能为当前这个数,或者是前面一个数结尾的最大子数组和加上当前的数。在实际的代码实现中,我们可以用一个变量记录max_sum[i-1],也就是前一个数结尾的最大子数组和,然后遍历整个数组,更新max_sum[i],同时用一个变量记录下所有 max_sum[i] 中的最大值即为所求连续最大子数组和。

C语言实现示例:

#include <stdio.h>

int maxSubArray(int* nums, int numsSize){
    int max_sum = nums[0];
    int cur_sum = nums[0];

    for(int i=1; i<numsSize; i++){
        cur_sum = (cur_sum + nums[i]) < nums[i] ? nums[i] : (cur_sum + nums[i]);
        max_sum = (max_sum < cur_sum) ? cur_sum : max_sum;
    }

    return max_sum;
}

int main()
{
    int nums[] = {1, -2, 3, 10, -4, 7, 2, -5};
    int numsSize = 8;

    int maxSum = maxSubArray(nums, numsSize);
    printf("The maximum subarray sum is %d\n", maxSum);

    return 0;
}

代码中,cur_sum 表示以当前数字结尾的连续子数组的和,max_sum 表示目前为止的连续子数组的最大和。函数 maxSubArray 的参数 nums 表示待计算的数组,参数 numsSize 表示数组的大小。在 for 循环中,通过比较 cur_sum + nums[i] 和 nums[i] 的大小来更新 cur_sum,直到遍历完整个数组。每次更新后通过比较 max_sum 和 cur_sum 之间的大小来更新 max_sum。

2. 示例解释

用上面的算法来解决示例1,即数组 nums1 = {1, -2, 3, 10, -4, 7, 2, -5},由于该数组的长度为8,因此在 max_sum 数组中,需要计算8个值,分别为:

  • max_sum[0] = 1
  • max_sum[1] = -1
  • max_sum[2] = 3
  • max_sum[3] = 13
  • max_sum[4] = 9
  • max_sum[5] = 16
  • max_sum[6] = 18
  • max_sum[7] = 13

因此,最大子数组和为18,它对应的子数组是{3, 10, -4, 7, 2}。

同样,在示例2,即数组 nums2 = {1, -2, 3, 10, -6, 4, 7, -3, -6, 10, 10, -1} 中,max_sum 数组中的各值分别为:

  • max_sum[0] = 1
  • max_sum[1] = -1
  • max_sum[2] = 3
  • max_sum[3] = 13
  • max_sum[4] = 7
  • max_sum[5] = 11
  • max_sum[6] = 18
  • max_sum[7] = 15
  • max_sum[8] = 9
  • max_sum[9] = 19
  • max_sum[10] = 29
  • max_sum[11] = 28

也就是说,最大子数组和为29,它对应的子数组是{1, -2, 3, 10, -6, 4, 7, -3, -6, 10, 10}。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:C语言求连续最大子数组和的方法 - Python技术站

(0)
上一篇 2023年5月25日
下一篇 2023年5月25日

相关文章

  • 在Ubuntu系统上安装Nginx服务器的简单方法

    下面我将为你详细讲解在Ubuntu系统上安装Nginx服务器的简单方法的攻略。 准备工作 在安装Nginx服务器之前,你需要先确保你的Ubuntu系统是最新的,可以通过以下命令来升级系统: sudo apt update sudo apt upgrade 安装Nginx 在Ubuntu系统上安装Nginx服务器非常简单,只需要在终端中输入以下命令即可: su…

    人工智能概览 2023年5月25日
    00
  • keras使用Sequence类调用大规模数据集进行训练的实现

    Keras是一个用于深度学习的高级API,它可以在TensorFlow、CNTK、Theano、MXNet等框架之上运行,并提供了简单易用的接口,方便用户进行模型的设计、调试和训练。如果我们需要对大规模数据集进行训练,为了避免内存溢出等问题,可以使用Keras提供的Sequence类来调用数据。本文将详细介绍如何使用Keras的Sequence类实现大规模数…

    人工智能概论 2023年5月25日
    00
  • javascript 获取图片颜色

    以下是详细的“javascript 获取图片颜色”的攻略,希望能够帮助您解决问题。 1. 使用 Canvas API 获取图片颜色 使用 Canvas API 是比较常见的一种获取图片颜色的方法,其主要思路是:将图片绘制到一个 canvas 元素上,然后通过遍历 canvas 上的像素点来获取每个像素的颜色值。 具体实现步骤如下: 步骤一:创建 Canvas…

    人工智能概览 2023年5月25日
    00
  • Python脚本调试工具安装过程

    下面是Python脚本调试工具安装过程的完整攻略。 安装过程 步骤1:安装Python 首先需要安装Python,可以在Python官网下载安装包进行安装,或使用系统自带的Python环境。 步骤2:安装调试工具 常用的Python脚本调试工具有pdb、ipdb、pudb等。具体安装方法如下: 使用pip安装pdb 如果已经安装了Python,可以使用pip…

    人工智能概览 2023年5月25日
    00
  • python与sqlite3实现解密chrome cookie实例代码

    下面我将详细讲解如何使用Python和SQLite3实现解密Chrome Cookie的完整攻略。这里的示例代码是基于Windows操作系统,假设你已经通过pip安装好了必要的Python库,并已经在cmd中进入到Python程序所在的路径。 环境准备 在开始编写代码之前,我们需要准备好环境。首先要从Chrome浏览器中导出Cookie,得到一个SQLite…

    人工智能概论 2023年5月25日
    00
  • 详解从Django Allauth中进行登录改造小结

    下面我将详细讲解“详解从Django Allauth中进行登录改造小结”的完整攻略。 1.什么是Django Allauth Django Allauth是一个开源的Django扩展,提供了一系列默认的认证和授权视图及模板,可以快速地实现用户认证、社交账号登录、第三方授权等功能。 2.登录改造的需求及目标 在使用Django Allauth提供的默认登录页面…

    人工智能概览 2023年5月25日
    00
  • python Opencv计算图像相似度过程解析

    下面我将为您讲解“Python OpenCV计算图像相似度过程解析”的完整攻略。 1. 简介 在图像处理和识别场景中,有时需要计算两张图片的相似度。OpenCV是一个强大的开源计算机视觉库,提供了各种用于计算图像相似度的函数。在本攻略中,我们将学习如何使用Python OpenCV计算图像相似度。 2. 计算图像相似度 2.1 图像的直方图 图像的直方图是一…

    人工智能概览 2023年5月25日
    00
  • Python中在for循环中嵌套使用if和else语句的技巧

    Python中的for循环结构可以嵌套if和else语句,这使得代码的灵活性增加了不少。在这里,我们将为大家详细讲解如何在Python中嵌套使用if和else语句。 为什么使用for循环中嵌套if和else语句 在处理数据集等需要遍历的数据结构时,经常需要在循环内使用if和else结构来筛选符合条件的数据。嵌套使用if和else语句可以进一步判断符合条件的数…

    人工智能概论 2023年5月25日
    00
合作推广
合作推广
分享本页
返回顶部