yolov5 win10 CPU与GPU环境搭建过程

我来讲解一下 "Yolov5 Win10 CPU与GPU环境搭建过程" 的攻略。

环境要求

首先,我们需要满足以下环境要求:

  • Python >= 3.8
  • Pytorch >= 1.7.0
  • CUDA >= 10.2(需要GPU环境)
  • cuDNN >= 8.0.4(需要GPU环境)
  • NVIDIA GPU(需要GPU环境)

CPU环境搭建

  1. 安装Anaconda

在官网下载Windows下的Anaconda安装包,安装过程中请注意把Anaconda加入环境变量。

  1. 安装Python依赖

打开Anaconda Prompt,执行以下命令安装Python依赖:

conda create -n yolov5 python=3.8 -y
conda activate yolov5
pip install -U pip
pip install opencv-python scipy torchvision
  1. 下载Yolov5

官方Github仓库中下载Yolov5代码,解压后进入yolov5目录。

  1. 测试运行

执行以下命令测试运行:

python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/bus.jpg
  1. 安装其他依赖

如果需要使用其他功能,可以根据需要安装相应的依赖,比如:

pip install -U seaborn pandas matplotlib pillow tensorboard

GPU环境搭建

如果需要使用GPU进行训练和推理,则需要按照以下步骤配置GPU环境。

  1. 安装CUDA和cuDNN

NVIDIA官网下载合适的CUDA版本,并安装。然后在NVIDIA官网下载对应版本的cuDNN,并解压到CUDA的安装目录中。

  1. 安装Pytorch

Pytorch官网中选择相应的配置命令,例如:

conda install pytorch torchvision torchaudio cudatoolkit=<VERSION>

其中VERSION是CUDA的版本号,例如10.2。

  1. 安装其他依赖

其他依赖的安装方式与CPU环境相同。需要注意的是,如果需要使用GPU加速,代码中要使用to()方法将变量转为GPU张量,例如:

img = img.to(device)
  1. 测试运行

执行以下命令测试GPU环境:

python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images/bus.jpg --device 0

其中--device参数指定设备编号,0表示第一块GPU。

示例说明

以下是两个针对Yolov5 Win10 CPU与GPU环境搭建过程的示例说明。

示例一

问题描述

我在Win10上安装了Anaconda、CUDA和cuDNN,但在安装Pytorch时遇到了问题,安装失败。请问如何解决这个问题?

解决方案

可能是CUDA和cuDNN的版本与Pytorch要求的不一样。你可以在Pytorch官网查看支持的CUDA和cuDNN版本号,然后根据实际情况选择相应的版本进行安装。

示例二

问题描述

我在CPU环境下成功运行了Yolov5代码,但在GPU环境下运行时提示“RuntimeError: Expected object of device type cuda but got device type cpu for argument ...”。请问如何解决这个问题?

解决方案

这是因为代码中的某个变量没有转为GPU张量导致的。你可以检查代码中的每个变量,确保它们都使用了to()方法将变量转为GPU张量。如果还有问题,可以尝试将代码中的device参数设置为0或者未设置,表示使用第一块GPU进行运算。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:yolov5 win10 CPU与GPU环境搭建过程 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • 使用Pandas读取CSV文件的特定列

    如果需要从CSV文件中读取特定列,Pandas提供了很方便的方法。下面是完整攻略: 步骤1:导入Pandas模块 在使用Pandas前,需要先导入Pandas模块。可以使用以下代码进行导入: import pandas as pd 这样就可以在代码中使用Pandas库提供的各种函数和方法。 步骤2:读取CSV文件 使用Pandas的read_csv()方法读…

    python-answer 2023年3月27日
    00
  • 如何在Pandas中创建一个空的DataFrame并向其添加行和列

    在 Pandas 中创建一个空的 DataFrame 并向其添加行和列涉及以下步骤: 导入 Pandas 模块: import pandas as pd 创建空的 DataFrame: df = pd.DataFrame() 添加列到 DataFrame,使用以下语法: df[‘column_name’] = None 其中,column_name 是你想要…

    python-answer 2023年3月27日
    00
  • 从字典的字典创建Pandas数据框架

    首先,我们需要了解什么是字典的字典。字典的字典是指一个字典对象中每个键对应的值是一个字典对象。 例如,下面的字典d1就是一个字典的字典: d1 = {‘A’: {‘X’: 1, ‘Y’: 2}, ‘B’: {‘X’: 3, ‘Y’: 4}} 在这个字典中,键’A’和’B’对应的值都是一个字典。 现在,我们来讲解如何从字典的字典创建Pandas数据框架。 步骤…

    python-answer 2023年3月27日
    00
  • pandas处理csv文件的方法步骤

    下面是pandas处理csv文件的方法步骤的完整攻略: 步骤1:导入pandas库 在使用pandas处理csv文件前,需要先导入pandas库,方法如下: import pandas as pd 其中,“pd”是pandas的惯常简写,遵循这个简写可以让我们的代码更加简洁明了。 步骤2:读取CSV文件 接下来需要读取CSV文件,pandas提供了一些方便易…

    python 2023年5月14日
    00
  • CentOS 7搭建Linux GPU服务器的教程

    CentOS7搭建LinuxGPU服务器的教程 介绍 本教程介绍如何在CentOS7上搭建LinuxGPU服务器,以便更好地利用图形处理能力加速深度学习或科学计算工作。 步骤一:检查GPU驱动 首先,为了能够使用GPU,需要安装相应的驱动程序。可以通过以下命令检查当前系统是否已经安装了正确的GPU驱动程序: lspci | grep -i nvidia 如果…

    python 2023年5月14日
    00
  • Python Pandas学习之数据离散化与合并详解

    Python Pandas学习之数据离散化与合并详解 什么是数据离散化 数据离散化是指将连续型数据按照一定的方法划分为离散型数据的过程。例如,我们可以将一组年龄数据按照一定的划分标准,划分为儿童、青少年、成年人和老年人等几个离散的类别。 数据离散化的原因 数据离散化常常是为了更好的进行数据分析和建模,例如: 减小噪声的影响 降低数据复杂度,简化模型 方便进行…

    python 2023年5月14日
    00
  • 如何在Python中对CSV进行多列排序

    可以使用Python的内置库csv和operator来对CSV进行多列排序。 首先,我们需要读取CSV文件并将其转换为list对象: import csv with open(‘data.csv’, ‘r’) as file: reader = csv.reader(file) data = list(reader) 接下来,我们可以使用sorted()函数…

    python-answer 2023年3月27日
    00
  • 如何在Pandas数据框架的指定列上显示条形图

    要在Pandas数据框架的指定列上显示条形图,需要先准备好数据,并使用Pandas的plot函数进行绘图。下面是详细步骤: 导入Pandas和Matplotlib库 import pandas as pd import matplotlib.pyplot as plt 创建数据框架 data = {‘Name’: [‘Tom’, ‘Jerry’, ‘Bob’…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部