我只改了两个数字,然后,所有错误,不翼而飞,两天折腾,全是穷折腾。

事情是这样的,除了官方说法,其他不带官方doc的教程都是耍流氓。

有人说,官方说anaconda+python非常简单好配置,为什么,我这么多错误,最后不得不用pip,因为官方配置文档,就是makefile.config里面是anaconda2+python2.7,如果你安装的是以上版本,那你的确很简单,但是旧版本是注定要被淘汰的,你看现在谁用windows xp?

没有教程,或者没有最新的针对anaconda3+python3.6的,中么办?

我告诉你,配置的时候只需按照你的anaconda安装包里面的路径,原本的改了那个针对anaconda2的路径即可,所有前置,所有版本,全都给你弄好了,你只要改了比如我的python在anaconda中的

 

caffe makefile.config anaconda2 python3 所有问题一种解决方式

那我需要把config中的python2.7改成3.6m总之,你既然用了anaconda,你就要精确的告诉你的caffe去哪里找我的库,而不是瞎改,改完了出错,到处去搜索(是我)我看了那么多doc,唯一一块自由发挥,就把自己给坑了(的确看脸,可能最近照镜子有点多)

最后附上我的config,我这片终极教程,是建立在你看了官网教程的基础上的,配置最后的config时的。另外提醒一句,GPU cudnn要求你的显卡加速在3以上,我的机子不到,而且bantu16.04要求装cuda8.0,我装了9.1。我显然是好奇又傻大胆,在犯错的边缘试探,就爱尝试最新版,等我装回cuda8,再整个GPU版本的。

请注意cudnn与cuda是不一定一起的,具体看管网,配置的时候说了三种情况。

另外如果装cudnn那么请注意时差,对面工作时间非常准时,我们只能在早上还有晚上访问观望。其他时间都是维护。我就奇怪了,运维都请不起吗???

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
 CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#    You should not set this flag if you will be reading LMDBs with any
#    possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
# OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 
        -gencode arch=compute_20,code=sm_21 
        -gencode arch=compute_30,code=sm_30 
        -gencode arch=compute_35,code=sm_35 
        -gencode arch=compute_50,code=sm_50 
        -gencode arch=compute_52,code=sm_52 
        -gencode arch=compute_60,code=sm_60 
        -gencode arch=compute_61,code=sm_61 
        -gencode arch=compute_61,code=compute_61

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python3.5 
        /usr/lib/python3.6/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
 ANACONDA_HOME := $(HOME)/anaconda3

 PYTHON_INCLUDE := $(ANACONDA_HOME)/include 
         $(ANACONDA_HOME)/include/python3.6m 
         $(ANACONDA_HOME)/lib/python3.6/site-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)
 #PYTHON_LIBRARIES := boost_python3 python3.5m
 #PYTHON_INCLUDE := /usr/include/python3.5m 
  #               /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
#PYTHON_LIB := /usr/lib

 PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
 WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
#INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

最后,如果有问题欢迎留言,我现在还比较熟悉,你在晚点我就忘了。

另外,万一火了,问得太多了,我就该高冷了(想太多)