Pandas中某一列的累积总和 – Python

要计算 Pandas 中某一列的累积总和,可以使用 Pandas 库中的 cumsum() 函数。该函数会返回一个累计总和的序列,序列中每个值等于原序列中前面所有元素的和。

下面是具体实现的步骤和代码示例:

1.导入 Pandas 库 。

import pandas as pd

2.创建 Pandas DataFrame 对象。

df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'B': [10, 20, 30, 40, 50]})

该语句会创建一个 DataFrame 对象,其中有两列 A 和 B,分别包含 1 到 5 和 10 到 50 的数字。

3.计算某一列的累积总和。

df['B_cumsum'] = df['B'].cumsum()

上述语句中,我们选择了 DataFrame 对象中的 B 列,并调用了 cumsum() 函数。接着,我们将其返回值赋值给一个新的列 B_cumsum。这样,B_cumsum 就会包含 B 列中所有元素的累计总和。

4.查看结果。

print(df)

输出结果:

   A   B  B_cumsum
0  1  10        10
1  2  20        30
2  3  30        60
3  4  40       100
4  5  50       150

在输出结果中,我们可以看到 DataFrame 对象中新增的一列 B_cumsum,它包含了 B 列中每个元素的累计总和。

以上就是在 Pandas 中计算某一列的累积总和的基本方法及其代码示例。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pandas中某一列的累积总和 – Python - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • 在Python中向现有的Pandas DataFrame添加字典和系列的列表

    在Python中,可以使用Pandas来创建和操作数据帧(DataFrame),在实际的数据处理过程中,需要向现有的DataFrame添加字典和系列的列表,在此,提供以下完整攻略及实例说明。 向Pandas DataFrame添加字典 在Pandas中,可以使用append()方法向Dataframe中添加字典,示例如下: import pandas as …

    python-answer 2023年3月27日
    00
  • 连接pandas以及数组转pandas的方法

    连接pandas以及数组转pandas的方法需要用到pandas库。 在Python中,连接另一个库的基本方法是导入。使用下面的代码可以将pandas库导入到Python环境: import pandas as pd 这条语句将pandas库导入并将其重新命名为“pd”,以方便在代码中使用。 首先来讲解数组转化为pandas数据框的方法。可以使用DataFr…

    python 2023年5月14日
    00
  • pandas中关于apply+lambda的应用

    下面是关于使用 apply 和 lambda 实现对 Pandas 数据进行一些处理的攻略: 1. apply和lambda的含义 apply 是 Pandas 库中一个非常常用的方法,可以对数据进行一些特定的操作,比如,合并、过滤等等。而 lambda 则是 Python 中一种匿名函数的实现方式,也可看作是一种简短的语法糖,可在不定义完整函数的情况下快速…

    python 2023年6月13日
    00
  • Python pandas读取CSV文件的注意事项(适合新手)

    让我来为您讲解“Python pandas读取CSV文件的注意事项的完整攻略”。 什么是CSV文件? CSV(Comma-Separated Values)意思为“逗号分隔值”,通俗来说,就是每一行表示一条数据,每个字段之间用逗号进行分隔,不同行之间用回车换行进行分隔的一种文本文件格式。 为什么要使用pandas读取CSV文件? pandas是python中…

    python 2023年5月14日
    00
  • Python 包含汉字的文件读写之每行末尾加上特定字符

    为了在Python中读写包含中文字符的文件并在每行末尾加上特定字符,有以下几个步骤: 1. 打开文件 在Python中打开文本文件,可能需要设置编码方式(默认是UTF-8): with open(file_path, ‘r’, encoding=’utf-8′) as f: # 这里使用with语句是为了自动关闭文件 这个步骤中, file_path 是文件…

    python 2023年6月13日
    00
  • 如何使用 Pandas 的分层索引

    Pandas的分层索引(Hierarchical Indexing)可以让我们在一个轴上拥有多个索引级别,这样可以更加灵活方便地表示多维数据。 一、创建分层索引 在 Pandas 中创建分层索引的方式很多,最常用的方法是通过在创建DataFrame或者Series时传入元组列表。 下面以DataFrame为例,通过传入元组列表创建一个 3 x 3 的分层索引…

    python-answer 2023年3月27日
    00
  • Pandas数据清洗函数总结

    《Pandas数据清洗函数总结》这篇文章主要是介绍Pandas中常用的数据清洗函数,其主要分为以下几个部分: 1.缺失值处理 在数据处理的过程中,经常会出现数据缺失的情况,我们需要使用相关的函数进行缺失值的处理。下面是常用的缺失值处理函数: isnull()/notnull()函数:返回布尔值,表示是否为缺失值。 dropna()函数:删除所有包含缺失值的行…

    python 2023年5月14日
    00
  • 如何根据列名或行索引对Pandas数据框架进行排序

    针对Pandas数据框架排序,主要可以根据列名或行索引进行排序,这里分别进行详细的讲解和示例说明。 根据列名排序 可以使用Pandas数据框架的sort_values()方法,根据指定的列名对数据进行排序,并指定升序或降序排列。 # 创建数据框架 import pandas as pd data = { ‘name’: [‘jack’, ‘tom’, ‘lu…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部