pytorch 固定部分参数训练的方法

在PyTorch中,有时候我们需要固定部分参数进行训练,例如在迁移学习中,我们可能只想训练模型的最后几层,而不是整个模型。本文将提供一个完整的攻略,介绍如何在PyTorch中固定部分参数进行训练。我们将提供两个示例,分别是使用requires_grad和使用nn.ModuleList固定部分参数进行训练。

示例1:使用requires_grad固定部分参数进行训练

以下是一个示例,展示如何使用requires_grad固定部分参数进行训练。

1. 导入库

import torch
import torch.nn as nn
import torch.optim as optim

2. 定义模型

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = nn.functional.relu(self.conv1(x))
        x = nn.functional.max_pool2d(x, 2)
        x = nn.functional.relu(self.conv2(x))
        x = nn.functional.max_pool2d(x, 2)
        x = x.view(-1, 16 * 5 * 5)
        x = nn.functional.relu(self.fc1(x))
        x = nn.functional.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()

3. 固定部分参数

for param in net.parameters():
    param.requires_grad = False

for param in net.fc3.parameters():
    param.requires_grad = True

4. 定义损失函数和优化器

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.fc3.parameters(), lr=0.001, momentum=0.9)

5. 训练模型

for epoch in range(2):  # 多次循环数据集

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 2000 == 1999:    # 每2000个小批量数据打印一次损失值
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

示例2:使用nn.ModuleList固定部分参数进行训练

以下是一个示例,展示如何使用nn.ModuleList固定部分参数进行训练。

1. 导入库

import torch
import torch.nn as nn
import torch.optim as optim

2. 定义模型

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv_layers = nn.ModuleList([
            nn.Conv2d(3, 6, 5),
            nn.Conv2d(6, 16, 5)
        ])
        self.fc_layers = nn.ModuleList([
            nn.Linear(16 * 5 * 5, 120),
            nn.Linear(120, 84),
            nn.Linear(84, 10)
        ])

    def forward(self, x):
        for layer in self.conv_layers:
            x = nn.functional.relu(layer(x))
            x = nn.functional.max_pool2d(x, 2)
        x = x.view(-1, 16 * 5 * 5)
        for layer in self.fc_layers:
            x = nn.functional.relu(layer(x))
        return x

net = Net()

3. 固定部分参数

for i, layer in enumerate(net.conv_layers):
    if i == 0:
        for param in layer.parameters():
            param.requires_grad = False
    else:
        for param in layer.parameters():
            param.requires_grad = True

4. 定义损失函数和优化器

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

5. 训练模型

for epoch in range(2):  # 多次循环数据集

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 2000 == 1999:    # 每2000个小批量数据打印一次损失值
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

总结

本文提供了一个完整的攻略,介绍了如何在PyTorch中固定部分参数进行训练。我们提供了两个示例,分别是使用requires_grad和使用nn.ModuleList固定部分参数进行训练。在实现过程中,我们使用了PyTorch的requires_grad和nn.ModuleList,并使用了backward()函数计算梯度。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pytorch 固定部分参数训练的方法 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • pytorch实现学习率衰减

    pytorch实现学习率衰减 目录 pytorch实现学习率衰减 手动修改optimizer中的lr 使用lr_scheduler LambdaLR——lambda函数衰减 StepLR——阶梯式衰减 MultiStepLR——多阶梯式衰减 ExponentialLR——指数连续衰减 CosineAnnealingLR——余弦退火衰减 ReduceLROnP…

    2023年4月6日
    00
  • Pytorch 之损失函数

    1. torch.nn.MSELoss    均方损失函数,一般损失函数都是计算一个 batch 数据总的损失,而不是计算单个样本的损失。 $$L = (x – y)^{2}$$    这里 $L, x, y$ 的维度是一样的,可以是向量或者矩阵(有多个样本组合),这里的平方是针对 Tensor 的每个元素,即 $(x-y)**2$ 或 $torch.pow…

    2023年4月6日
    00
  • Pytorch使用PIL和Numpy将单张图片转为Pytorch张量方式

    将单张图片转为PyTorch张量是深度学习中常见的操作之一。在PyTorch中,我们可以使用PIL和Numpy库来实现这一操作。本文将提供一个详细的图文教程,介绍如何使用PIL和Numpy将单张图片转为PyTorch张量,并提供两个示例说明。 1. 使用PIL将单张图片转为PyTorch张量 以下是一个示例代码,展示了如何使用PIL将单张图片转为PyTorc…

    PyTorch 2023年5月15日
    00
  • 利用Pytorch实现获取特征图的方法详解

    利用PyTorch实现获取特征图的方法详解 在本文中,我们将介绍如何使用PyTorch获取卷积神经网络(CNN)中的特征图。我们将提供两个示例,一个是使用预训练模型,另一个是使用自定义模型。 示例1:使用预训练模型 以下是使用预训练模型获取特征图的示例代码: import torch import torchvision.models as models i…

    PyTorch 2023年5月16日
    00
  • 使用pytorch框架实现使用MF模型在movielen数据集上的电影评分预测

    一、MF介绍 (1)实验的主要任务:使用MF模型在数据集合上的评分预测(movielens,随机80%训练数据,20%测试数据,随机构造 Koren的经典模型) (2)参考论文:MATRIX  FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS 简单模型:难点在于构造qi与pu,通过来预测评分rui。在构造qi与…

    2023年4月8日
    00
  • 小白学习之pytorch框架(3)-模型训练三要素+torch.nn.Linear()

     模型训练的三要素:数据处理、损失函数、优化算法     数据处理(模块torch.utils.data) 从线性回归的的简洁实现-初始化模型参数(模块torch.nn.init)开始 from torch.nn import init # pytorch的init模块提供了多中参数初始化方法 init.normal_(net[0].weight, mean…

    PyTorch 2023年4月6日
    00
  • Pytorch基础-tensor数据结构

    torch.Tensor 是一种包含单一数据类型元素的多维矩阵,类似于 numpy 的 array。 Tensor 可以使用 torch.tensor() 转换 Python 的 list 或序列数据生成,生成的是dtype 默认是 torch.FloatTensor。 torch.Tensor Tensor 数据类型 Tensor 的属性 view 和 r…

    2023年4月6日
    00
  • PyTorch实现多维度特征输入逻辑回归

    PyTorch实现多维度特征输入逻辑回归 在PyTorch中,逻辑回归是一种用于二分类问题的机器学习算法。在本文中,我们将介绍如何使用PyTorch实现多维度特征输入逻辑回归,并提供两个示例说明。 示例1:使用PyTorch实现二分类逻辑回归 以下是一个使用PyTorch实现二分类逻辑回归的示例代码: import torch import torch.nn…

    PyTorch 2023年5月16日
    00
合作推广
合作推广
分享本页
返回顶部