Pytorch释放显存占用方式

下面是关于Pytorch如何释放显存占用的完整攻略,包含两条示例说明。

1. 使用with torch.no_grad()释放显存

在Pytorch中,通过with语句使用torch.no_grad()上下文管理器可以释放显存,这个操作对于训练中不需要梯度计算的代码非常有用。

代码示例:

import torch

# 创建一个3000 * 3000的矩阵
tensor = torch.randn((3000, 3000))

# 开启上下文管理器,释放梯度计算
with torch.no_grad():
    # 计算矩阵的逆矩阵
    inv_tensor = torch.inverse(tensor)

# 逆矩阵计算结束后,回到正常计算模式

2. 使用torch.cuda.empty_cache()释放显存

在使用Pytorch训练神经网络时,经常会出现显存占用过高的问题。这时可以使用torch.cuda.empty_cache()释放一些不必要的显存。

代码示例:

import torch

# 创建一个3000 * 3000的矩阵,并将其放到设备上运算
tensor = torch.randn((3000, 3000)).to("cuda")

# 使用矩阵进行计算
result = tensor.matmul(tensor)

# 记录结果值
value = result.mean()

# 释放一些显存
torch.cuda.empty_cache()

# 继续进行后续计算

综上所述,以上是两种有效的Pytorch释放显存占用方式,可以帮助我们更好的管理显存,提高训练过程中的稳定性和效率。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pytorch释放显存占用方式 - Python技术站

(1)
上一篇 2023年5月17日
下一篇 2023年5月17日

相关文章

  • Pytorch中的gather使用方法

    PyTorch中的gather使用方法 在PyTorch中,gather是一个非常有用的函数,可以用于从一个张量中按照指定的索引收集元素。本文将介绍如何使用PyTorch中的gather函数,并演示两个示例。 示例一:使用gather函数从一个张量中按照指定的索引收集元素 import torch # 定义张量 x = torch.tensor([[1, 2…

    PyTorch 2023年5月15日
    00
  • 梯度下降与pytorch

    记得在tensorflow的入门里,介绍梯度下降算法的有效性时使用的例子求一个二次曲线的最小值。 这里使用pytorch复现如下: 1、手动计算导数,按照梯度下降计算 import torch #使用梯度下降法求y=x^2+2x+1 最小值 从x=3开始 x=torch.Tensor([3]) for epoch in range(100): y=x**2+…

    PyTorch 2023年4月7日
    00
  • Yolov5训练意外中断后如何接续训练详解

    当YOLOv5的训练意外中断时,我们可以通过接续训练来恢复训练过程,以便继续训练模型。下面是接续训练的详细步骤: 首先,我们需要保存当前训练的状态。我们可以使用PyTorch提供的torch.save()函数将模型的参数和优化器的状态保存到文件中。例如,我们可以使用以下代码将模型的参数和优化器的状态保存到文件checkpoint.pth中: torch.sa…

    PyTorch 2023年5月15日
    00
  • Ubuntu新建用户以及安装pytorch

    环境:Ubuntu18,Python3.6 首先登录服务器 ssh username@xx.xx.xx.xxx #登录一个已有的username 新建用户 sudo adduser username sudo usermod -aG sudo username 然后退出 exit 重新登录 ssh username@xx.xx.xx.xxx #这里是新创建的…

    PyTorch 2023年4月8日
    00
  • Pytorch 扩展Tensor维度、压缩Tensor维度

        相信刚接触Pytorch的宝宝们,会遇到这样一个问题,输入的数据维度和实验需要维度不一致,输入的可能是2维数据或3维数据,实验需要用到3维或4维数据,那么我们需要扩展这个维度。其实特别简单,只要对数据加一个扩展维度方法就可以了。 1.1 torch.unsqueeze(self: Tensor, dim: _int)   torch.unsqueez…

    2023年4月8日
    00
  • pytorch 归一化与反归一化实例

    在本攻略中,我们将介绍如何使用PyTorch实现归一化和反归一化。我们将使用torchvision.transforms库来实现这个功能。 归一化 归一化是将数据缩放到0和1之间的过程。在PyTorch中,我们可以使用torchvision.transforms.Normalize()函数来实现归一化。以下是一个示例代码,演示了如何使用torchvision…

    PyTorch 2023年5月15日
    00
  • 关于pytorch处理类别不平衡的问题

    在PyTorch中,处理类别不平衡的问题是一个常见的挑战。本文将介绍如何使用PyTorch处理类别不平衡的问题,并演示两个示例。 类别不平衡问题 在分类问题中,类别不平衡指的是不同类别的样本数量差异很大的情况。例如,在二分类问题中,正样本数量远远小于负样本数量,这就是一种类别不平衡问题。类别不平衡问题会影响模型的性能,因为模型会倾向于预测数量较多的类别。 处…

    PyTorch 2023年5月15日
    00
  • minconda安装pytorch的详细方法

    Miniconda安装PyTorch的详细方法 在本文中,我们将介绍如何使用Miniconda安装PyTorch,并提供两个示例说明。 安装Miniconda 首先,我们需要从官方网站下载适用于您的操作系统的Miniconda安装程序,并按照提示进行安装。 创建虚拟环境 接下来,我们需要创建一个虚拟环境,以便在其中安装PyTorch。在终端中输入以下命令: …

    PyTorch 2023年5月16日
    00
合作推广
合作推广
分享本页
返回顶部