跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样

摘要:本文讲述图像金字塔知识,了解专门用于图像向上采样和向下采样的pyrUp()和pyrDown()函数。

本文分享自华为云社区《[Python图像处理] 二十一.图像金字塔之图像向下取样和向上取样》,作者:eastmount。

一.图像金字塔

图像金字塔是指由一组图像且不同分别率的子图集合,它是图像多尺度表达的一种,以多分辨率来解释图像的结构,主要用于图像的分割或压缩。一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。如图6-11所示,它包括了四层图像,将这一层一层的图像比喻成金字塔。图像金字塔可以通过梯次向下采样获得,直到达到某个终止条件才停止采样,在向下采样中,层级越高,则图像越小,分辨率越低。

跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样

生成图像金字塔主要包括两种方式——向下取样、向上取样。在图6-11中,将图像G0转换为G1、G2、G3,图像分辨率不断降低的过程称为向下取样;将G3转换为G2、G1、G0,图像分辨率不断增大的过程称为向上取样。

二.图像向下取样

在图像向下取样中,使用最多的是高斯金字塔。它将对图像Gi进行高斯核卷积,并删除原图中所有的偶数行和列,最终缩小图像。其中,高斯核卷积运算就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值(权重不同)经过加权平均后得到。常见的3×3和5×5高斯核如下:

跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样

高斯核卷积让临近中心的像素点具有更高的重要度,对周围像素计算加权平均值,如图6-12所示,其中心位置权重最高为0.4。

跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样

显而易见,原始图像Gi具有M×N个像素,进行向下取样之后,所得到的图像Gi+1具有M/2×N/2个像素,只有原图的四分之一。通过对输入的原始图像不停迭代以上步骤就会得到整个金字塔。注意,由于每次向下取样会删除偶数行和列,所以它会不停地丢失图像的信息。

在OpenCV中,向下取样使用的函数为pyrDown(),其原型如下所示:

dst = pyrDown(src[, dst[, dstsize[, borderType]]])

  • src表示输入图像,
  • dst表示输出图像,和输入图像具有一样的尺寸和类型
  • dstsize表示输出图像的大小,默认值为Size()
  • borderType表示像素外推方法,详见cv::bordertypes

实现代码如下所示:

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('nv.png')
#图像向下取样
r = cv2.pyrDown(img)
#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrDown', r)
cv2.waitKey()
cv2.destroyAllWindows()

输出结果如图6-13所示,它将原始图像压缩成原图的四分之一。

跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样

多次向下取样的代码如下:

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('nv.png')
#图像向下取样
r1 = cv2.pyrDown(img)
r2 = cv2.pyrDown(r1)
r3 = cv2.pyrDown(r2)
#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrDown1', r1)
cv2.imshow('PyrDown2', r2)
cv2.imshow('PyrDown3', r3)
cv2.waitKey()
cv2.destroyAllWindows()

输出结果如图所示:

跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样

三.图像向上取样

在图像向上取样是由小图像不断放图像的过程。它将图像在每个方向上扩大为原图像的2倍,新增的行和列均用0来填充,并使用与“向下取样”相同的卷积核乘以4,再与放大后的图像进行卷积运算,以获得“新增像素”的新值。如图6-15所示,它在原始像素45、123、89、149之间各新增了一行和一列值为0的像素。

跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样

在OpenCV中,向上取样使用的函数为pyrUp(),其原型如下所示:

dst = pyrUp(src[, dst[, dstsize[, borderType]]])

  • src表示输入图像,
  • dst表示输出图像,和输入图像具有一样的尺寸和类型
  • dstsize表示输出图像的大小,默认值为Size()
  • borderType表示像素外推方法,详见cv::bordertypes

实现代码如下所示:

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('lena.png')
#图像向上取样
r = cv2.pyrUp(img)
#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrUp', r)
cv2.waitKey()
cv2.destroyAllWindows()

输出结果如图6-16所示,它将原始图像扩大为原图像的四倍。

跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样

多次向上取样的代码如下:

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('lena2.png')
#图像向上取样
r1 = cv2.pyrUp(img)
r2 = cv2.pyrUp(r1)
r3 = cv2.pyrUp(r2)
#显示图像
cv2.imshow('original', img)
cv2.imshow('PyrUp1', r1)
cv2.imshow('PyrUp2', r2)
cv2.imshow('PyrUp3', r3)
cv2.waitKey()
cv2.destroyAllWindows()

输出结果如图6-17所示,每次向上取样均为上次图像的四倍,但图像的清晰度会降低。

跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样

希望这篇基础性文章对您有所帮助,如果有错误或不足之处,请海涵!

感恩能与大家在华为云遇见!

参考文献:

 

点击关注,第一时间了解华为云新鲜技术~

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:跟我学Python图像处理丨关于图像金字塔的图像向下取样和向上取样 - Python技术站

(0)
上一篇 2023年4月2日
下一篇 2023年4月2日

相关文章

  • 用C++编写一个简单的发布者和订阅者

    摘要:节点(Node)是通过 ROS 图进行通信的可执行进程。 本文分享自华为云社区《编写一个简单的发布者和订阅者》,作者: MAVER1CK 。 @[toc] 参考官方文档:Writing a simple publisher and subscriber (C++) 背景 节点(Node)是通过 ROS 图进行通信的可执行进程。 在本教程中,节点将通过话…

    C++ 2023年4月27日
    00
  • 一文详解RocketMQ-Spring的源码解析与实战

    摘要:这篇文章主要介绍 Spring Boot 项目使用 rocketmq-spring SDK 实现消息收发的操作流程,同时笔者会从开发者的角度解读 SDK 的设计逻辑。 本文分享自华为云社区《RocketMQ-Spring : 实战与源码解析一网打尽》,作者:勇哥java实战分享。 RocketMQ 是大家耳熟能详的消息队列,开源项目 rocketmq-…

    Java 2023年4月25日
    00
  • 数仓如何进行表级控制analyze?

    摘要: 介绍如何设置采样大小和表级控制analyze。 本文分享自华为云社区《GaussDB(DWS) 如何表级控制analyze》,作者:leapdb。 一、控制采样大小 【设置全局采样大小】 通过参数default_statistics_target设置全局默认采样大小。 a.default_statistics_target>0,表示按固定值方式…

    MySQL 2023年4月18日
    00
  • 10分钟带你徒手做个Java线程池

    摘要:花10分钟开发一个极简版的Java线程池,让小伙伴们更好的理解线程池的核心原理。 本文分享自华为云社区《放大招了,冰河带你10分钟手撸Java线程池,yyds,赶快收藏吧》,作者:冰 河。 Java线程池核心原理 看过Java线程池源码的小伙伴都知道,在Java线程池中最核心的类就是ThreadPoolExecutor,而在ThreadPoolExec…

    Java 2023年4月19日
    00
  • 跟我学Python图像处理丨何为图像的灰度非线性变换

    摘要:本文主要讲解灰度线性变换,基础性知识希望对您有所帮助。 本文分享自华为云社区《[Python图像处理] 十六.图像的灰度非线性变换之对数变换、伽马变换》,作者:eastmount 。 本篇文章主要讲解非线性变换,使用自定义方法对图像进行灰度化处理,包括对数变换和伽马变换。 一.图像灰度非线性变换 图像的灰度非线性变换主要包括对数变换、幂次变换、指数变换…

    2023年4月2日
    00
  • Python代码用在这些地方,其实1行就够了!

    摘要:都说 Python 简单快捷,那本篇博客就为大家带来一些实用的 Python 技巧,而且仅需要 1 行代码,就可以解决一些小问题。 本文分享自华为云社区《你猜 1 行Python代码能干什么呢?神奇的单行 Python 代码》,作者:梦想橡皮擦。 1 行代码的由来 都说 Python 简单快捷,那本篇博客就为大家带来一些实用的 Python 技巧,而且…

    Python开发 2023年4月2日
    00
  • 全球首个开发者村启动开村,产业聚力松山湖,共创大湾区创新高地

    摘要:由东莞松山湖管委会、东莞市工业和信息化局与华为云共同主办的松山湖开发者生态创新峰会暨华为开发者大赛中国区启动仪式举行。 打造一流创新生态,与全球开发者共赢。4月26日,由东莞松山湖管委会、东莞市工业和信息化局与华为云共同主办的松山湖开发者生态创新峰会暨华为开发者大赛中国区启动仪式举行,全国开发者企业、个人开发者齐聚松山湖,分享最核心前沿的产品技术及技术…

    云计算 2023年4月30日
    00
  • 读书笔记丨理解和学习事务,让你更好地融入云原生时代

    摘要:分布式事务与云原生技术有很强的关联,可以帮助云原生应用程序实现高效的分布式事务处理。 本文分享自华为云社区《理解和学习事务,让你更好地融入云原生时代》,作者: breakDawn。 随着云原生的概念越来越火,服务的架构应该如何发展和演进,成为很多程序员关心的话题。大名鼎鼎的《深入理解java虚拟机》一书作者于21年推出了新作《凤凰架构》,从这本书中可以…

    云计算 2023年5月8日
    00
合作推广
合作推广
分享本页
返回顶部