卷积神经网络

  • 可分离卷积详解及计算量 Basic Introduction to Separable Convolutions

    任何看过MobileNet架构的人都会遇到可分离卷积(separable convolutions)这个概念。但什么是“可分离卷积”,它与标准的卷积又有什么区别?可分离卷积主要有两种类型: 空间可分离卷积(spatial separable convolutions) 深度可分离卷积(depthwise separable convolutions) 空间可…

    2023年4月8日
    00
  • 【深度学习】卷积神经网络CNN——手写一个卷积神经网络

    卷积神经网络的前向传播 1.输入层—->卷积层   输入是一个4*4 的image,经过两个2*2的卷积核进行卷积运算后,变成两个3*3的feature_map 以卷积核filter1为例(stride = 1 ): 计算第一个卷积层神经元$ o_{11} $的输入: $$\begin{align}net_{o11} \nonumber& …

    2023年4月8日
    00
  • 扩张卷积(dilated convolution)

    最早出现在DeeplLab系列中,作用:可以在不改变特征图尺寸的同时增大感受野,摈弃了pool的做法(丢失信息); 我们设: kernel size = k, dilation rate = d, input size = W1, output size = W2, stride=s, padding=p; Dilation convolution(扩张卷积…

    2023年4月8日
    00
  • Network In Network——卷积神经网络的革新

    Network In Network 是13年的一篇paper 引用:Lin M, Chen Q, Yan S. Network in network[J]. arXiv preprint arXiv:1312.4400, 2013.   文章的新点: 1. 采用 mlpcon 的结构来代替 traditional 卷积层;  2. remove 卷积神经网…

    2023年4月8日
    00
  • TensorFlow 卷积神经网络手写数字识别数据集介绍

    http://www.tensorflownews.com/,学习更多的机器学习、深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池化层,实现一个卷积神经网络来进行手写数字识别,并输出卷积和池化效果。 数据准备 MNIST 数据集下载 MNIST 数据集可以从 THE MNIST DATABASE of handwritte…

    2023年4月8日
    00
  • 第十二节,卷积神经网络之卷积神经网络示例(二)

     一 三维卷积(Convolutions over Volumes) 前面已经讲解了对二维图像做卷积了,现在看看如何在三维立体上执行卷积。 我们从一个例子开始,假如说你不仅想检测灰度图像的特征,也想检测 RGB 彩色图像的特征。彩色图像如果是 6×6×3,这里的 3 指的是三个颜色通道,你可以把它想象成三个 6×6图像的堆叠。为了检测图像的边缘或者其他的特征…

    2023年4月8日
    00
  • 学习笔记TF028:实现简单卷积网络

    载入MNIST数据集。创建默认Interactive Session。 初始化函数,权重制造随机噪声打破完全对称。截断正态分布噪声,标准差设0.1。ReLU,偏置加小正值(0.1),避免死亡节点(dead neurons)。 卷积层函数,tf.nn.conv2d,TensorFlow 2 维卷积函数,参数x输入,W卷积参数,卷积核尺寸,channel个数,卷…

    卷积神经网络 2023年4月8日
    00
  • 深度学习与计算机视觉系列(10)_细说卷积神经网络

    转自:http://blog.csdn.net/han_xiaoyang/article/details/50542880 作者:寒小阳 时间:2016年1月。 出处:http://blog.csdn.net/han_xiaoyang/article/details/50542880 声明:版权所有,转载请联系作者并注明出处 1. 前言 前面九讲对神经网络的…

    2023年4月8日
    00
  • 对卷积(convolution)的理解 – oliverPP

    对卷积(convolution)的理解 参考文章 https://www.jianshu.com/p/daaaeb718aed https://blog.csdn.net/bitcarmanlee/article/details/54729807  https://www.zhihu.com/question/22298352 —-这个是重点   num…

    2023年4月8日
    00
  • 序列卷积:线性、周期和圆周

    线性卷积   线性卷积公式为$y(n)=x_1(n) \ast x_2(n)= \sum_{m=-\infty}^{\infty} x_1(m)x_2(n-m) = \sum_{m=-\infty}^{\infty} x_2(m)x_1(n-m)$。   卷积的过程可以理解为其中一个序列关于Y轴翻褶,然后不断移位,同时与另外一个序列进行相乘。   周期卷积 …

    2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部