下面是使用SpringBoot和ShardingSphereJDBC实现读写分离的详细攻略。
一、什么是ShardingSphereJDBC
ShardingSphereJDBC是一款分布式数据库中间件,它提供了分库分表、读写分离、分布式事务等功能,并与主流的ORM框架(如Spring JDBC,MyBatis,JPA等)深度集成,让应用开发者无需改变已有的应用代码即可使用ShardingSphereJDBC的各项功能。
二、使用SpringBoot和ShardingSphereJDBC实现读写分离的步骤
1、引入依赖
在pom.xml文件中引入ShardingSphereJDBC的相关依赖。以下是一个示例:
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>sharding-jdbc-core</artifactId>
<version>4.1.1</version>
</dependency>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>sharding-jdbc-spring-boot-starter</artifactId>
<version>4.1.1</version>
</dependency>
2、配置数据源
这里我们定义两个数据源:主库和从库。在application.yml文件中配置数据源,以下是一个示例:
spring:
datasource:
master:
driver-class-name: com.mysql.cj.jdbc.Driver
url: jdbc:mysql://localhost:3306/master_db?useUnicode=true&characterEncoding=utf-8&useSSL=false&serverTimezone=Asia/Shanghai
username: root
password: root
slave:
driver-class-name: com.mysql.cj.jdbc.Driver
url: jdbc:mysql://localhost:3306/slave_db?useUnicode=true&characterEncoding=utf-8&useSSL=false&serverTimezone=Asia/Shanghai
username: root
password: root
3、配置分片规则
在application.yml文件中配置分片规则。我们这里以按照user_id分片为例子,以下是一个示例:
sharding:
datasource:
names: master,slave
master:
jdbc-url: jdbc:mysql://localhost:3306/master_db?useUnicode=true&characterEncoding=utf-8&useSSL=false&serverTimezone=Asia/Shanghai
username: root
password: root
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1
maintenanceIntervalMilliseconds: 30000
maxIdleTimeMilliseconds: 1800000
slave:
jdbc-url: jdbc:mysql://localhost:3306/slave_db?useUnicode=true&characterEncoding=utf-8&useSSL=false&serverTimezone=Asia/Shanghai
username: root
password: root
connectionTimeoutMilliseconds: 30000
idleTimeoutMilliseconds: 60000
maxLifetimeMilliseconds: 1800000
maxPoolSize: 50
minPoolSize: 1
maintenanceIntervalMilliseconds: 30000
maxIdleTimeMilliseconds: 1800000
sharding:
tables:
user:
actualDataNodes: master.user, slave.user
tableStrategy:
inline:
shardingColumn: user_id
algorithmExpression: user_${user_id % 2}
4、使用ShardingDataSource配置数据源
最后在SpringBoot应用中使用ShardingDataSource来实现读写分离。以下是一个示例:
@Configuration
public class DataSourceConfig {
@Autowired
private DataSource masterDataSource;
@Autowired
private DataSource slaveDataSource;
@Bean
public DataSource shardingDataSource() throws SQLException {
Map<String, DataSource> dataSourceMap = new HashMap<>(2);
dataSourceMap.put("master", masterDataSource);
dataSourceMap.put("slave", slaveDataSource);
ShardingRuleConfiguration shardingRuleConfig = new ShardingRuleConfiguration();
TableRuleConfiguration tableRuleConfig = new TableRuleConfiguration("user", "master.user,slave.user");
tableRuleConfig.setTableShardingStrategyConfig(
new StandardShardingStrategyConfiguration("user_id", new InlineShardingAlgorithm() {
@Override
public String doSharding(final Collection<String> availableTargetNames, final ShardingValue shardingValue) {
return "user_" + shardingValue.getValue().toString().hashCode() % 2;
}
}));
shardingRuleConfig.getTableRuleConfigs().add(tableRuleConfig);
Properties properties = new Properties();
properties.setProperty("sql.show", Boolean.TRUE.toString());
return ShardingDataSourceFactory.createDataSource(dataSourceMap, shardingRuleConfig, new ConcurrentHashMap<>(), properties);
}
}
以上就是使用SpringBoot和ShardingSphereJDBC实现读写分离的全部过程。
三、示例
我们来看两个示例:
示例1:查询
以下代码演示了如何使用ShardingSphereJDBC和SpringBoot在读写分离情况下进行查询操作:
@Service
public class UserServiceImpl implements UserService {
@Autowired
private UserMapper userMapper;
@Override
public List<User> findByUserIdList(List<Long> userIdList) {
List<User> userList = new ArrayList<>();
userIdList.forEach(userId -> {
userList.addAll(userMapper.findByUserId(userId));
});
return userList;
}
}
其中UserMapper是一个标准的MyBatis Mapper,但是我们使用的是ShardingSphereJDBC提供的动态数据源代理对象,这样就可以自动路由到主库或从库。以下是一个示例:
@Mapper
public interface UserMapper {
@Select("SELECT * FROM user WHERE user_id = #{userId}")
List<User> findByUserId(@Param("userId") Long userId);
}
示例2:写入
以下代码演示了如何使用ShardingSphereJDBC和SpringBoot进行插入操作:
@Service
public class UserServiceImpl implements UserService {
@Autowired
private UserMapper userMapper;
@Override
public void save(User user) {
userMapper.insert(user);
}
}
同样,我们在Mapper中使用的是ShardingSphereJDBC提供的动态数据源代理对象,这样就可以自动路由到主库。以下是一个示例:
@Mapper
public interface UserMapper {
@Insert("INSERT INTO user (user_id, user_name, password) VALUES (#{userId}, #{userName}, #{password})")
void insert(User user);
}
以上两个示例均可以自动路由到主库或从库上进行数据操作。
这就是使用SpringBoot和ShardingSphereJDBC实现读写分离的攻略。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:SpringBoot+ShardingSphereJDBC实现读写分离详情 - Python技术站