以下是基于PyTorch SSD模型分析的完整攻略。
简介
SSD(Single Shot MultiBox Detector)是一种基于深度学习的目标检测算法,其通过单次前向传递即可在图像中检测出多个不同尺寸、不同比例及不同类别的目标。本攻略将介绍如何使用PyTorch实现SSD模型,并对其进行分析。
准备环境
在开始使用SSD模型分析之前,需要安装PyTorch、numpy和torchvisions等必要的Python库:
!pip install torch
!pip install numpy
!pip install torchvision
实现SSD模型
在实现SSD模型之前,需要先准备好数据集,并进行数据预处理,预处理包括:
- 图像大小变换;
- 图像标准化;
- 数据白化。
预处理可以使用PyTorch中的transforms进行实现,代码示例如下:
import torch
import torchvision
from torchvision import transforms
# 将输入图像尺寸调整为指定尺寸
image_size = (300, 300)
# 图像标准化参数
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
# 数据白化参数
pca = False
transform = transforms.Compose([
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize(mean, std),
torchvision.transforms.Lambda(lambda x: x*255)
])
接下来,可以根据指定的卷积层参数,实现SSD模型中的卷积层和归一化层等。代码示例如下:
import torch
import torch.nn as nn
class ConvBNReLU(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
super(ConvBNReLU, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class SSD(nn.Module):
def __init__(self):
super(SSD, self).__init__()
self.conv1_1 = ConvBNReLU(3, 32, 3, padding=1)
self.conv1_2 = ConvBNReLU(32, 64, 3, padding=1)
self.conv2_1 = ConvBNReLU(64, 128, 3, padding=1)
self.conv2_2 = ConvBNReLU(128, 128, 3, stride=2, padding=1)
self.conv3_1 = ConvBNReLU(128, 256, 3, padding=1)
self.conv3_2 = ConvBNReLU(256, 256, 3, stride=2, padding=1)
self.conv4_1 = ConvBNReLU(256, 512, 3, padding=1)
self.conv4_2 = ConvBNReLU(512, 512, 3, padding=1)
self.conv5_1 = ConvBNReLU(512, 512, 3, stride=2, padding=1)
self.conv5_2 = ConvBNReLU(512, 512, 3, padding=1)
self.dense1_1 = nn.Conv2d(512, 512, kernel_size=3, dilation=6, padding=6)
self.dense1_2 = nn.Conv2d(512, 512, kernel_size=1)
self.dense2_1 = nn.Conv2d(512, 256, kernel_size=1, padding=0)
self.dense2_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.dense3_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0)
self.dense3_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.dense4_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
self.dense4_2 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=0)
def forward(self, x):
x = self.conv1_1(x)
x = self.conv1_2(x)
x = self.conv2_1(x)
x = self.conv2_2(x)
x = self.conv3_1(x)
x = self.conv3_2(x)
x = self.conv4_1(x)
x = self.conv4_2(x)
x = self.conv5_1(x)
x = self.conv5_2(x)
x = self.dense1_1(x)
x = self.dense1_2(x)
x = self.dense2_1(x)
x = self.dense2_2(x)
x = self.dense3_1(x)
x = self.dense3_2(x)
x = self.dense4_1(x)
x = self.dense4_2(x)
return x
分析SSD模型
完成SSD模型的实现后,可以对其进行分析。其中,最常使用的分析方法是生成网络结构图。
生成网络结构图需要安装graphviz库:
!pip install graphviz
代码示例:
from torchviz import make_dot
model = SSD()
batch_size = 1
x = torch.randn(batch_size, 3, 300, 300, requires_grad=True)
y = model(x)
dot = make_dot(y.mean(), params=dict(model.named_parameters()))
dot.format = 'svg'
dot.render(filename='ssd_model', directory='./', view=True)
执行上述代码后,将会在当前目录下生成名为ssd_model
的svg格式的网络结构图。
示例说明1
下面给出一个使用PASCAL VOC数据集训练SSD模型的示例,代码实现如下:
from utils.config import opt
from data.dataset import VOCBboxDataset, VOC_CLASSES, VOC_ROOT
from model.ssd import build_ssd
from trainer import train_ssd
import torch.utils.data as data
from torchvision import transforms
def train():
dataset = VOCBboxDataset(opt.voc_data_dir, split='train', transform=Transform)
dataloader = data.DataLoader(dataset, batch_size=opt.batch_size,
num_workers=opt.num_workers,
shuffle=True, collate_fn=detection_collate,
pin_memory=True)
# 加载训练好的模型
net = build_ssd('train', 300, 21)
net.load_weights('weights/ssd300_mAP_77.43_v2.pth')
trainer = train_ssd.Trainer(net)
trainer.train(dataloader)
if __name__ == '__main__':
train()
在该示例中,使用了PASCAL VOC数据集,通过build_ssd()函数创建SSD网络后,使用load_weights()函数加载预训练的SSD模型,在使用trainer进行模型训练。
示例说明2
下面给出一个使用SSD模型检测人脸的示例,代码实现如下:
from PIL import Image
from model.ssd import build_ssd
import torch
import torchvision.transforms as transforms
class_names = ['background', 'face']
# 创建SSD模型
net = build_ssd('test', 300, 2)
net.load_state_dict(torch.load('models/ssd300_face.pth', map_location=torch.device('cpu')))
net.eval()
# 图像预处理
transform = transforms.Compose([
transforms.Resize((300, 300)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 加载待检测的图像
image = Image.open('test_images/face3.jpg')
image_tensor = transform(image)
image_tensor = image_tensor.unsqueeze(0)
# SSD检测
preds = net(image_tensor)
boxes, labels, scores = preds
# 可视化检测结果
for i in range(len(labels)):
if labels[i] == 0:
continue
bbox = boxes[i].numpy()
score = scores[i].numpy()
xmin, ymin, xmax, ymax = bbox
cls_id = int(labels[i] - 1)
print('{} score = {} box = {}'.format(class_names[cls_id], score, bbox))
draw.rectangle([xmin, ymin, xmax, ymax], outline='green')
draw.text([xmin, ymin], text=class_names[cls_id], fill='red')
在该示例中,使用了在WiderFace数据集上训练好的SSD模型对人脸进行检测。通过加载训练好的模型,将待检测的图像进行预处理后输入模型,输出检测结果,并使用可视化工具将检测结果可视化。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:基于Pytorch SSD模型分析 - Python技术站