python pandas模块基础学习详解

Python pandas模块基础学习详解

什么是Python Pandas模块

Python Pandas是一种开放源代码的数据分析库,在Python中广泛应用,尤其是在数据挖掘、机器学习和金融分析等领域得到广泛运用。Pandas提供了强大的数据结构,以及在数据分析方面常用的分析函数,可以轻松地处理数据。

Python Pandas模块的功能

Python Pandas模块能够处理以下几种类型的数据:

  • CSV
  • Excel
  • SQL
  • JSON

Pandas提供了两种关键数据类型:

  • Series:一维带标签的数组
  • DataFrame:多维表格,类似于SQL语句中的JOIN

安装Python Pandas模块

要使用Python Pandas模块,您需要在系统中安装它。

通过命令行操作安装pandas模块:

pip install pandas

创建一个Series对象

Series是由一组数据(可以是数字、字符串、布尔值等等)以及一组与之相关联的标签组成的。

示例:

import pandas as pd
data = pd.Series([0.25, 0.5, 0.75, 1.0])
print(data)

输出:

0    0.25
1    0.50
2    0.75
3    1.00
dtype: float64

创建一个DataFrame对象

创建DataFrame可以看作是若干Series对象的合并。

示例:

import pandas as pd
data = {"name": ["John", "Anna", "Peter"], "age": [23, 36, 32]}
dataFrame = pd.DataFrame(data)
print(dataFrame)

输出:

    name  age
0   John   23
1   Anna   36
2  Peter   32

结论

以上是Python Pandas模块的基础学习详解。Pandas模块是数据分析领域的必备工具,您可以通过以上的学习来快速了解了解如何使用Python Pandas模块完成数据分析。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:python pandas模块基础学习详解 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • Python3.5 Pandas模块之Series用法实例分析

    介绍: Pandas是一个Python第三方库,主要用于数据分析和处理,它是在NumPy基础上开发出来的,而且它的数据结构有Series和DataFrame,其中,Series是一种一维的数组,和数组最大的区别在于Series中每个数据都会有一个索引,这个索引可以默认的是从0开始生成,也可以自己定义,而Series中的数据必须是同一个数据类型。本文将详细使用…

    python 2023年5月14日
    00
  • Pandas是什么?Pandas的特点与优势

    Pandas 是一个开源的第三方 Python 库,从 Numpy 和 Matplotlib 的基础上构建而来,享有数据分析“三剑客之一”的盛名(NumPy、Matplotlib、Pandas)。目前,Pandas 已经成为 Python 数据分析的必备高级工具,它的目标是成为强大、灵活、可以支持任何编程语言的数据分析工具。 Pandas 最初由 Wes M…

    2023年3月4日
    00
  • 如何使用Pandas的apply()来代替

    当我们需要对Pandas的DataFrame或Series的每个元素进行操作时,可以使用apply()方法。apply()方法可以对一维、二维数据等多种数据类型进行操作。 下面是使用Pandas的apply()方法进行操作的完整攻略步骤: 步骤1:导入相关库 在开始前,需要导入Pandas库,并通过以下代码导入: import pandas as pd 步骤…

    python-answer 2023年3月27日
    00
  • 在Pandas数据框架中,将列的第一个字母大写

    在Pandas数据框架中,将列的第一个字母大写,可以通过以下步骤实现: 导入 Pandas 模块: pythonimport pandas as pd 创建包含数据的数据框 DataFrame: “`pythondata = {‘name’: [‘tom’, ‘jack’, ‘steve’, ‘ricky’], ‘age’: [28, 34, 29, 42…

    python-answer 2023年3月27日
    00
  • Python中的pandas.isna()函数

    当我们在处理数据的时候,经常会遇到一些缺失值(NaN,None),这些缺失值会导致很多问题和错误,比如计算结果不准确,无法进行可视化,等等。而pandas库中的isna()函数就可以非常方便地判断一个数据是否为缺失值。 函数用法 pandas.isna(obj) 该函数的作用是判断数据是否为缺失值。 参数说明 obj:要判断的数据。 返回值 如果数据是缺失值…

    python-answer 2023年3月27日
    00
  • 详解pandas映射与数据转换

    详解pandas映射与数据转换攻略 Pandas是Python中非常流行的数据处理和分析库。Pandas中提供了很多方便易用的数据转换和映射功能,帮助我们快速对数据进行处理。本文将详细讲解Pandas中映射和转换的相关功能,以及示例说明。 Part 1 映射 1.1 映射原理 映射(Mapping)是一种比较常用的数据转换技术。在Pandas中,映射是对某一…

    python 2023年5月14日
    00
  • 用SQLAlchemy将Pandas连接到数据库

    首先,我们需要先安装SQLAlchemy和Pandas包。可以使用以下命令在终端或命令行中进行安装: pip install sqlalchemy pandas 接下来,我们需要创建一个数据库引擎。在这里,我们使用SQLite数据库。 from sqlalchemy import create_engine engine = create_engine(‘s…

    python-answer 2023年3月27日
    00
  • 用pandas划分数据集实现训练集和测试集

    一、前言在机器学习领域,我们经常需要将数据集划分为训练集和测试集。训练集用于建立模型,测试集用于评估模型的泛化能力。pandas是Python中常用的数据处理库,可以方便地对数据进行读取、处理、统计和分析。本文将说明如何使用pandas划分数据集实现训练集和测试集。 二、划分数据集的方法常见的数据集划分方法有以下两种: 1.随机划分随机选择一些数据作为训练集…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部