TensorFlow的环境配置与安装教程详解(win10+GeForce GTX1060+CUDA 9.0+cuDNN7.3+tensorflow-gpu 1.12.0+python3.5.5)

TensorFlow的环境配置与安装教程详解(win10+GeForce GTX1060+CUDA 9.0+cuDNN7.3+tensorflow-gpu 1.12.0+python3.5.5)

TensorFlow是一个非常流行的深度学习框架,它可以在GPU上运行,提高训练速度。本攻略将介绍如何在Windows 10操作系统上配置TensorFlow的环境,并提供两个示例说明。

环境配置

以下是环境配置的步骤:

  1. 安装CUDA 9.0。

下载地址:https://developer.nvidia.com/cuda-90-download-archive

安装过程中需要注意以下几点:

  • 安装路径不要包含中文或空格。
  • 安装时选择“Custom”选项,然后选择“CUDA Toolkit”和“Visual Studio Integration”。
  • 安装完成后需要将CUDA的bin目录添加到系统环境变量中。

  • 安装cuDNN 7.3。

下载地址:https://developer.nvidia.com/rdp/cudnn-archive

安装过程中需要注意以下几点:

  • 安装路径与CUDA的安装路径一致。
  • 安装完成后需要将cuDNN的bin目录添加到系统环境变量中。

  • 安装Anaconda。

下载地址:https://www.anaconda.com/products/individual

安装过程中需要注意以下几点:

  • 安装路径不要包含中文或空格。
  • 安装完成后需要将Anaconda的bin目录添加到系统环境变量中。

  • 创建虚拟环境。

打开Anaconda Prompt,输入以下命令:

bash
conda create -n tensorflow python=3.5.5

  1. 激活虚拟环境。

输入以下命令:

bash
activate tensorflow

  1. 安装TensorFlow-gpu 1.12.0。

输入以下命令:

bash
pip install tensorflow-gpu==1.12.0

  1. 测试安装是否成功。

输入以下命令:

bash
python
import tensorflow as tf
print(tf.__version__)

如果输出的版本号为1.12.0,则说明安装成功。

示例1:使用TensorFlow实现线性回归

以下是示例步骤:

  1. 导入必要的库。

python
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

  1. 准备数据。

python
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3

  1. 定义模型。

python
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b

  1. 定义损失函数。

python
loss = tf.reduce_mean(tf.square(y - y_data))

  1. 定义优化器。

python
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

  1. 训练模型。

python
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(W), sess.run(b))

在这个示例中,我们演示了如何使用TensorFlow实现线性回归。

示例2:使用TensorFlow实现手写数字识别

以下是示例步骤:

  1. 导入必要的库。

python
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

  1. 加载数据集。

python
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

  1. 定义模型。

python
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

  1. 训练模型。

python
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

在这个示例中,我们演示了如何使用TensorFlow实现手写数字识别。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:TensorFlow的环境配置与安装教程详解(win10+GeForce GTX1060+CUDA 9.0+cuDNN7.3+tensorflow-gpu 1.12.0+python3.5.5) - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • 在Tensorflow中实现梯度下降法更新参数值

    在TensorFlow中实现梯度下降法更新参数值 梯度下降法是一种常用的优化算法,用于更新模型的参数值。在TensorFlow中,我们可以使用梯度下降法来更新模型的参数值。本文将详细讲解如何在TensorFlow中实现梯度下降法更新参数值,并提供两个示例说明。 步骤1:定义模型 首先,我们需要定义一个模型。可以使用以下代码定义一个简单的线性回归模型: imp…

    tensorflow 2023年5月16日
    00
  • TensorFlow函数:tf.random_shuffle

    random_shuffle( value, seed=None, name=None ) 定义在:tensorflow/python/ops/random_ops.py. 请参阅指南:生成常量,序列和随机值>随机张量 随机地将张量沿其第一维度打乱. 张量沿着维度0被重新打乱,使得每个 value[j] 被映射到唯一一个 output[i].例如,一个…

    tensorflow 2023年4月6日
    00
  • Win10+TensorFlow-gpu pip方式安装,anaconda方式安装

    中文官网安装教程:https://www.tensorflow.org/install/install_windows#determine_how_to_install_tensorflow 1.安装前须安装CUDA和cuDNN: cuDNN需要手动配置的环境变量: cuDNN:将C:\Program Files\cudnn-9.0-windows10-x6…

    2023年4月8日
    00
  • Tensorflow 错误:The flag ‘xxx’ is defined twice

    添加 FLAGS = tf.app.flags.FLAGS lst = list(FLAGS._flags().keys()) for key in lst: FLAGS.__delattr__(key) 或 FLAGS = tf.app.flags.FLAGS lst = list(FLAGS._flags().keys()) for key in lst…

    tensorflow 2023年4月7日
    00
  • Python conda安装 并安装Tensorflow

    Python conda安装 1: 官网下载3版本 Anaconda2-2018.12-Windows-x86_64.exe, 安装完后配置环境变量 用户变量->PATH 编辑新增路径 C:ProgramDataAnaconda3Scripts 2:重新管理员身份输入conda –version 查看版本, 然后升级包 conda upgrade -…

    2023年4月7日
    00
  • Tensorflow环境安装记录–无法识别GPU的问题

    1、镜像: -i http://pypi.douban.com/simple –trusted-host pypi.douban.com 2、版本信息(红色标注为我电脑的配置信息) 说明:在安装tensorflow-gpu环境时,一定要注意版本信息的对应,否则会出现各种奇葩的问题。 例如,我在安装tensorflow_gpu,由于默认安装的是最新的版本2.…

    tensorflow 2023年4月6日
    00
  • Pytorch中TensorBoard及torchsummary的使用详解

    PyTorch是一种流行的深度学习框架,可以用于快速构建和训练神经网络。在使用PyTorch时,我们可以使用TensorBoard和torchsummary来可视化模型和训练过程。本文将详细讲解PyTorch中TensorBoard及torchsummary的使用,并提供两个示例说明。 TensorBoard的使用 TensorBoard是TensorFlo…

    tensorflow 2023年5月16日
    00
  • TensorFlow实现打印每一层的输出

    在TensorFlow中,我们可以使用tf.Print()函数来打印每一层的输出。下面是详细的实现步骤: 步骤1:定义模型 首先,我们需要定义一个模型。这里我们以一个简单的全连接神经网络为例: import tensorflow as tf # 定义输入和输出 x = tf.placeholder(tf.float32, [None, 784]) y = t…

    tensorflow 2023年5月16日
    00
合作推广
合作推广
分享本页
返回顶部