计算Pandas数据框架的行和列的数量

计算 Pandas 数据框架的行和列的数量是一项基本的任务,同时也是在进行数据分析或数据处理时所必须的步骤。在 Pandas 中,行和列的数量可以通过属性 shape 来获取。在本文中,我们将详细讲解计算 Pandas 数据框架行和列的数量的完整攻略,使用示例来讲解。

计算行和列的数量

1. 读取数据

在示例中,我们先读取一个含有约 10,000 条记录的数据集,数据集来自 Kaggle 上的餐馆评分数据集。我们将使用 Pandas 中的 read_csv 函数读取数据集并转化为 Pandas 数据框架。

import pandas as pd

df = pd.read_csv("restaurant-ratings.csv")
print(df.head())

输出如下所示:

   Restaurant ID  ... Minimum order for 1
0           6000  ...                  50
1           6001  ...                  50
2           6002  ...                  50
3           6003  ...                  50
4           6004  ...                  50

[5 rows x 19 columns]

2. 计算行和列的数量

Pandas 数据框架的行和列的数量可以通过访问数据框架的 shape 属性来获取。shape 属性返回一个元组,第一个元素为行数,第二个元素为列数。

num_rows = df.shape[0]
num_cols = df.shape[1]

print("Number of rows: {}".format(num_rows))
print("Number of columns: {}".format(num_cols))

输出如下所示:

Number of rows: 10000
Number of columns: 19

3. 结束语

本文中,我们讲解了如何计算 Pandas 数据框架的行和列的数量,使用了一个实际数据集的示例来说明方法。熟练掌握计算行和列数量的方法,是进行数据处理和数据分析的必要技能。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:计算Pandas数据框架的行和列的数量 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • Python读写txt文本文件的操作方法全解析

    下面针对“Python读写txt文本文件的操作方法全解析”的攻略进行详细讲解。 1. 读取txt文件 Python读取txt文件可以使用Python的内置函数open(),此函数可以返回一个文件对象。 # 打开文件方式一 f = open(‘filename.txt’, ‘r’) # 打开文件方式二 with open(‘filename.txt’, ‘r’…

    python 2023年5月14日
    00
  • Python与Pandas和XlsxWriter组合工作 – 2

    Python是一种广泛使用的编程语言,而Pandas是Python中的一种数据处理库,可以方便地进行数据的读取、处理和转换。而XlsxWriter则是Python中的一种Excel输出工具,可以将Pandas或其他数据类型的数据输出成Excel文件。 将这三种工具组合起来使用可以方便地处理大量数据并将结果输出成Excel格式,下面将逐步介绍这种工作方式的具体…

    python-answer 2023年3月27日
    00
  • 教你使用Python根据模板批量生成docx文档

    教你使用Python根据模板批量生成docx文档 简介 docx是Microsoft Word的文档格式,使用Python可以根据给定模板批量生成docx文档。本文将会介绍如何使用Python进行docx文件的自动化生成。 安装所需模块 在进行下一步之前,需要安装以下模块: docx:处理docx文件格式的Python库。可通过这个链接进行安装。 pip i…

    python 2023年6月14日
    00
  • 关于Python 列表的索引取值问题

    关于Python列表的索引取值问题,通常有两种情况:正向索引和反向索引。 正向索引 Python中的列表是有序的,可以使用正向索引从左向右取值。具体来说,正向索引是从0开始,列表中第一个元素的索引为0,第二个元素的索引为1,依次类推。 下面是几个正向索引的例子: 例子1: # 创建一个有三个元素的列表 fruits = ["apple",…

    python 2023年5月14日
    00
  • python 实现列表的切片操作允许索引超出范围

    Python支持对列表进行切片操作,切片操作允许我们从列表中按照指定的长度和步长获取其中的一部分元素。 除了基础的切片操作之外,Python还提供了一个很方便的功能,就是允许我们使用负数来表示从后往前的索引,这样我们就可以很方便地获取列表的后几个元素。此外,Python还允许我们在切片操作中使用超出索引范围的值,这也是本文要介绍的主题。 使用超出索引范围的值…

    python 2023年5月14日
    00
  • 详解pandas apply 并行处理的几种方法

    详解pandas apply并行处理的几种方法 在对大型数据集进行处理时,我们通常需要使用并行处理来加速代码运行。当涉及到Pandas库时,Pandas apply()是我们可以使用的最常见的函数之一。在本文中,我们将探讨如何利用Pandas apply()函数来进行并行处理。我们将介绍三种不同的方法,包括使用Dask库、multiprocessing模块和…

    python 2023年5月14日
    00
  • elasticsearch索引index数据功能源码示例

    让我来为你详细讲解“elasticsearch索引index数据功能源码示例”的完整攻略。 1. 什么是Elasticsearch索引? 在Elasticsearch中,索引被称为数据存储的容器。它是将数据储存到Elasticsearch中的基本单元。我们可以将索引理解为数据库中的表,数据都是存储在表中的。在Elasticsearch中,我们可以通过索引存储…

    python 2023年6月13日
    00
  • Pandas条件筛选与组合筛选的使用

    Pandas条件筛选与组合筛选的使用 在Pandas中,条件筛选和组合筛选是两种常见的数据筛选方式。它们可以帮助我们快速地筛选和过滤数据,从而进行数据分析和绘图。 条件筛选 条件筛选是根据条件来筛选数据的过程。Pandas提供了多种条件筛选的方法,如使用query()函数、使用布尔索引等。 使用query()函数 query()函数可以根据传入的查询表达式来…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部