计算Pandas数据框架的行和列的数量

计算 Pandas 数据框架的行和列的数量是一项基本的任务,同时也是在进行数据分析或数据处理时所必须的步骤。在 Pandas 中,行和列的数量可以通过属性 shape 来获取。在本文中,我们将详细讲解计算 Pandas 数据框架行和列的数量的完整攻略,使用示例来讲解。

计算行和列的数量

1. 读取数据

在示例中,我们先读取一个含有约 10,000 条记录的数据集,数据集来自 Kaggle 上的餐馆评分数据集。我们将使用 Pandas 中的 read_csv 函数读取数据集并转化为 Pandas 数据框架。

import pandas as pd

df = pd.read_csv("restaurant-ratings.csv")
print(df.head())

输出如下所示:

   Restaurant ID  ... Minimum order for 1
0           6000  ...                  50
1           6001  ...                  50
2           6002  ...                  50
3           6003  ...                  50
4           6004  ...                  50

[5 rows x 19 columns]

2. 计算行和列的数量

Pandas 数据框架的行和列的数量可以通过访问数据框架的 shape 属性来获取。shape 属性返回一个元组,第一个元素为行数,第二个元素为列数。

num_rows = df.shape[0]
num_cols = df.shape[1]

print("Number of rows: {}".format(num_rows))
print("Number of columns: {}".format(num_cols))

输出如下所示:

Number of rows: 10000
Number of columns: 19

3. 结束语

本文中,我们讲解了如何计算 Pandas 数据框架的行和列的数量,使用了一个实际数据集的示例来说明方法。熟练掌握计算行和列数量的方法,是进行数据处理和数据分析的必要技能。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:计算Pandas数据框架的行和列的数量 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • Pandas缺失值2种处理方式代码实例

    下面是“Pandas缺失值2种处理方式代码实例”的完整攻略。 简介 在数据分析和处理中,缺失值是很常见的情况。Pandas提供了多种方法来处理缺失值,本文将重点讲解两种常用的处理方式:删除缺失值和填充缺失值,并提供对应的代码实例。 删除缺失值 删除缺失值是处理缺失值最简单快捷的方法,但前提是缺失值占比不能过大。对于占比过大的缺失值,删除会导致数据量减少,可能…

    python 2023年5月14日
    00
  • 在Python中向现有的Pandas DataFrame添加字典和系列的列表

    在Python中,可以使用Pandas来创建和操作数据帧(DataFrame),在实际的数据处理过程中,需要向现有的DataFrame添加字典和系列的列表,在此,提供以下完整攻略及实例说明。 向Pandas DataFrame添加字典 在Pandas中,可以使用append()方法向Dataframe中添加字典,示例如下: import pandas as …

    python-answer 2023年3月27日
    00
  • pandas按某列降序的实现

    下面我将详细讲解“pandas按某列降序的实现”的完整攻略,包括以下几个部分: 准备工作 读取数据 使用sort_values方法进行排序 保存数据 接下来,我将从每个部分具体介绍。 1. 准备工作 在使用 pandas 进行数据处理之前,需要安装 pandas ,如果你还没有安装,可以使用以下命令安装: pip install pandas 安装完成之后,…

    python 2023年5月14日
    00
  • 基于Python实现帕累托图的示例详解

    基于Python实现帕累托图的示例详解 什么是帕累托图 帕累托图(Pareto Chart)也叫帕累托分析法,是利用帕累托原理(二八法则)和梯度图的基础上绘制出的图形,又称二八图。它是管理质量控制和精益制造中的一种工具,目的是通过图形的形式使人们能够快速地了解哪些因素是最重要的。它可以在产品设计、质量改进、进度控制等方面获得广泛应用。帕累托图通常由两个轴组成…

    python 2023年6月13日
    00
  • Pandas 格式化日期时间

    当进行数据分析时,我们会遇到很多带有日期、时间格式的数据集,在处理这些数据集时,就需要对日期时间做统一的格式化处理。 比如“Wednesday, June 6, 2023”可以写成“6/6/23”,或“06-06-2023”。 在 Pandas 中,我们可以使用 pd.to_datetime() 函数将日期字符串或时间戳转换为 Pandas 的日期时间类型。…

    Pandas 2023年3月6日
    00
  • Pandas使用query()优雅的查询实例

    下面是关于Pandas使用query()优雅的查询实例的完整攻略。 标准的markdown格式文本 什么是Pandas的query()方法 Pandas是Python中常用的数据处理库,它提供了query()方法用于查询数据。query() 方法支持字符串化的查询语句,可以方便的查询DataFrame中的数据。 query()方法的使用 query() 方法…

    python 2023年5月14日
    00
  • Python数据可视化:箱线图多种库画法

    下面是详细讲解“Python数据可视化:箱线图多种库画法”的完整攻略。 什么是箱线图? 箱线图又被称为盒须图,它是一种用来展示数据分布情况、离散程度和异常值的图表。箱线图主要由五部分组成:最大值、最小值、中位数、上四分位数、下四分位数。 最大值:数据中的最大值 最小值:数据中的最小值 中位数:将所有数据排成一列,取最中间的数作为中位数 上四分位数:将所有数据…

    python 2023年5月14日
    00
  • 在Pandas Dataframe中迭代行的不同方法

    当使用Pandas中的Dataframe时,我们要遍历每一行通常有三种方法: 使用迭代器来遍历DataFrame的每一行 这种方法比较原始,使用iterrows()方法来迭代每一行,并访问每一行的值。但是由于其内部实现需要循环遍历每一行,所以处理大数据集时比较慢。 import pandas as pd df = pd.DataFrame({‘Name’:[…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部