计算Pandas数据框架的行和列的数量

计算 Pandas 数据框架的行和列的数量是一项基本的任务,同时也是在进行数据分析或数据处理时所必须的步骤。在 Pandas 中,行和列的数量可以通过属性 shape 来获取。在本文中,我们将详细讲解计算 Pandas 数据框架行和列的数量的完整攻略,使用示例来讲解。

计算行和列的数量

1. 读取数据

在示例中,我们先读取一个含有约 10,000 条记录的数据集,数据集来自 Kaggle 上的餐馆评分数据集。我们将使用 Pandas 中的 read_csv 函数读取数据集并转化为 Pandas 数据框架。

import pandas as pd

df = pd.read_csv("restaurant-ratings.csv")
print(df.head())

输出如下所示:

   Restaurant ID  ... Minimum order for 1
0           6000  ...                  50
1           6001  ...                  50
2           6002  ...                  50
3           6003  ...                  50
4           6004  ...                  50

[5 rows x 19 columns]

2. 计算行和列的数量

Pandas 数据框架的行和列的数量可以通过访问数据框架的 shape 属性来获取。shape 属性返回一个元组,第一个元素为行数,第二个元素为列数。

num_rows = df.shape[0]
num_cols = df.shape[1]

print("Number of rows: {}".format(num_rows))
print("Number of columns: {}".format(num_cols))

输出如下所示:

Number of rows: 10000
Number of columns: 19

3. 结束语

本文中,我们讲解了如何计算 Pandas 数据框架的行和列的数量,使用了一个实际数据集的示例来说明方法。熟练掌握计算行和列数量的方法,是进行数据处理和数据分析的必要技能。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:计算Pandas数据框架的行和列的数量 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • Python Pandas数据合并pd.merge用法详解

    下面是关于“Python Pandas数据合并pd.merge用法详解”的完整攻略: 1. pd.merge()函数的概述 pd.merge()函数是Pandas库中用于数据合并的重要函数之一,该函数主要用于根据一组或多组key将不同DataFrame中的行进行合并。该函数的基本语法如下: pd.merge(left, right, how=’inner’,…

    python 2023年5月14日
    00
  • Python Pandas 对列/行进行选择,增加,删除操作

    下面我为你详细讲解Python Pandas对列/行进行选择、增加和删除操作的步骤。 选择操作 列选择 选择单列数据使用中括号 [] 即可,如下例所示: import pandas as pd df = pd.read_csv(‘example.csv’) # 选择 "name" 列数据 name = df[‘name’] print(n…

    python 2023年5月14日
    00
  • Python+pandas计算数据相关系数的实例

    下面就为大家详细讲解“Python+pandas计算数据相关系数的实例”的完整攻略。 1.前置知识 在进行本文的实例讲解之前,我们需要掌握如下知识点: Python基础语法 pandas数据分析库的基础使用 相关系数的计算方法 2.数据导入 我们将使用一个汽车数据集来进行演示,数据集的下载链接为:https://archive.ics.uci.edu/ml/…

    python 2023年5月14日
    00
  • 介绍Python中的文档测试模块

    下面我来详细讲解一下Python中文档测试模块的使用方法和攻略。 什么是文档测试模块? 文档测试模块是Python标准库中的一个模块,它提供了一种在Python docstrings中嵌入测试代码的方式,可以帮助开发者编写出拥有高质量和可靠性的代码和文档。 使用方法 首先,我们需要了解一下docstring和测试用例的概念。 Docstring docstr…

    python 2023年5月14日
    00
  • 如何在 Python 中处理分类变量的缺失值

    在 Python 中处理分类变量的缺失值,我们可以采用以下两种方法: 删除缺失值 可以选择删除所有含有缺失值的行或列。这种方法非常简单,但也容易导致数据量减少或者信息丢失的问题。如果数据集较大或者缺失值数量不多,可以采用该方法。 在 Pandas 中使用 dropna() 函数可以实现该功能。下面是一个示例: import pandas as pd # 读取…

    python-answer 2023年3月27日
    00
  • Python3数据库操作包pymysql的操作方法

    下面我来为大家讲解 Python3 数据库操作包 pymysql 的操作方法。 安装 PyMySQL 在开始使用 PyMySQL 之前,我们需要先根据 Python 版本安装 PyMySQL,可以通过 pip 命令来进行安装。 pip install PyMySQL 连接数据库 连接数据库需要使用 connect() 方法,并传入相应的参数。 import …

    python 2023年6月13日
    00
  • Pandas Cut–从连续到分类

    下面我就来详细讲解一下Pandas Cut的使用。 什么是Pandas Cut Pandas Cut是一种将连续数据转换为分类数据的函数。它可将连续的数值数据分段,每一段转化为一个离散的分类,同时可以对这些离散的分类进行标记和排序。 Cut函数的语法 Pandas Cut函数的语法如下: pandas.cut(x, bins, right=True, lab…

    python-answer 2023年3月27日
    00
  • 如何在Pandas中自动转换为最佳数据类型

    在Pandas中,数据类型(即数据的内部表示格式)对于数据分析非常重要。正确的数据类型可以减少存储空间、提高计算速度,以及避免错误的计算结果。而 Pandas 中有一种优雅的方式自动推断各个列的数据类型,并将其转换为最佳数据类型。本文将为您详细讲解如何在Pandas中自动转换为最佳数据类型。 1. 读取数据并查看列数据类型 首先,我们先读取一个数据集,并使用…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部