python数据可视化-matplotlib入门(1)–安装及绘制简单的曲线

一、安装matplotlib

1)由于已安装anaconda,可直接打开anaconda prompt,再用命令pip install matplotlib进行安装,因镜像问题,可能较慢,建议第2种方式。

2)访问https://pypi.org/project/matplotlib/#files,并查找与你使用的Python版本匹配的wheel文件(扩展名为.whl的文件),比如与python3.9版本相应的matplotlib-3.5.1-cp39-cp39-win_amd64.whl放在目录G:developpython下,(或者你自己所建目录)

打开anaconda prompt,再用命令pip install G:developpythonmatplotlib-3.5.1-cp39-cp39-win_amd64.whl(注意目录要保持一致) 执行完成即可。

python数据可视化-matplotlib入门(1)--安装及绘制简单的曲线

 二、测试 matplotlib

打开anaconda prompt 先输入python,再输入 import matplotlib,如图所示,没有出现任何错误消息,就说明系统安装成功。

python数据可视化-matplotlib入门(1)--安装及绘制简单的曲线

三、 绘制简单的折线

import matplotlib.pyplot as plt   #导入模块matplotlib.pyplot,并重新命名为plt

squares = [1,4,9,16,25,36,49,64,81,100]  #定义一个数组

plt.plot(squares, linewidth=5)# 设置图表标题,并给坐标轴加上标签和 参数 linewidth 决定了绘制的线条的粗细
plt.title("Square Numbers", fontsize=24)#设置标题和字体大小
plt.xlabel("Value", fontsize=14)  #  x轴标签,和字体大小
plt.ylabel("Square of Value", fontsize=14)  #  y轴标签,和字体大小
plt.tick_params(axis='both', labelsize=14) # 设置刻度标记的大小,函数 tick_params() 设置刻度的样式
plt.show()

这样就完成一个简单的折线图,运行效果如下:

python数据可视化-matplotlib入门(1)--安装及绘制简单的曲线

注:如果运行过程中,出现图中红色方框所示警告需要重新设置spyder中Tools,如下图所示:

python数据可视化-matplotlib入门(1)--安装及绘制简单的曲线

 

 四、使用 scatter() 绘制散点图并设置其样式

1、要绘制单个点

可使用函数 scatter() ,并向它传递一对x和y坐标,它将在指定位置绘制一个点:

import matplotlib.pyplot as plt   #导入模块matplotlib.pyplot,并重新命名为plt

plt.scatter(2, 4, s=200) #调用了scatter(),并使用实参s设置了绘制图形时使用的点的尺寸,位置为2,4

plt.title("Square Numbers", fontsize=24) # 设置图表标题并给坐标轴加上标签
plt.xlabel("Value", fontsize=14)
plt.ylabel("Square of Value", fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
plt.show()

python数据可视化-matplotlib入门(1)--安装及绘制简单的曲线

2、要绘制系列点

绘制系列点,只需要给出系列点的坐标即可。我们将上述代码中plt.scatter(2, 4, s=200)的2,4分别用两个数列代替。

import matplotlib.pyplot as plt   #导入模块matplotlib.pyplot,并重新命名为plt

x_values = [1, 2, 3, 4, 5]  #X轴的数列
y_values = [1, 3,6, 9, 12]  #y轴的数列
plt.scatter(x_values, y_values, s=100) #调用了scatter(),并使用实参s设置了绘制图形时使用的点的尺寸  
plt.title(
" series Numbers", fontsize=24) # 设置图表标题并给坐标轴加上标签
plt.xlabel("Value", fontsize=14)
plt.ylabel(
"Value", fontsize=14) # 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
plt.show()

运行结果如下:

python数据可视化-matplotlib入门(1)--安装及绘制简单的曲线

 3、自动计算数据

像上述手动输入点数,或数列,都是比较慢的处理方式 ,下面用for循环来替代手工输入。

可以先将x_values定义为一个数列,数值在一定的范围,比如1-1000,而对应的y_values也是一个数列,按一定的方式(函数)产生。于是,可以将上述代码修改为如下:

import matplotlib.pyplot as plt   #导入模块matplotlib.pyplot,并重新命名为plt

x_values = list(range(1, 1001))  #定义一个1-1000的数列,
y_values = [x**2 for x in x_values]  #定义Y值的生成方式。

plt.scatter(x_values, y_values, s=4) #调用了scatter(),并使用实参s设置了绘制图形时使用的点的尺寸

plt.title(" series Numbers", fontsize=24) # 设置图表标题并给坐标轴加上标签
plt.xlabel("Value", fontsize=14)
plt.ylabel("Value", fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=10)
plt.axis([1,1100,1,1100000]) #注意一下axis的参数
plt.show()

运行结果如下:

python数据可视化-matplotlib入门(1)--安装及绘制简单的曲线

matplotlib中的点默认为蓝色点和黑色轮廓,如上述三图所示,其中最后一图因为点较多,且连在一起,像是一条曲线,为区别不同的点,可以对点分别不同的颜色。

只需再配置几个参数 ,就可以删除黑色轮廓,和修改点的颜色。

plt.scatter(x_values, y_values, edgecolor='none', s=40),其中edgecolor='none'表示将黑色轮廓删除

修改数据点的颜色,可向 scatter() 传递参数 c ,并将其设置为要使用的颜色的名称,如下:

plt.scatter(x_values, y_values, c='red', edgecolor='none', s=40) # 将颜色修改为红色。

1、颜色映射(colormap)

颜色映射是一系列颜色,从起始颜色渐变到结束颜色。在可视化中,颜色映射用于突出数据的规律

plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues,edgecolor='none', s=40) 
#调用了scatter()参数 c 设置成了一个y值列表,并使用参数 cmap 告诉 pyplot 使用哪个颜色映射, # 将y值较小的点显示为浅蓝色,并将y值较大的点显示为深蓝色

具体运行效果如下:

python数据可视化-matplotlib入门(1)--安装及绘制简单的曲线

注意,要了解所有相关颜色的映射,可访问官网  http://matplotlib.org/,单击Examples,向下滚动到Color Examples,再单击colormaps_reference进行参考。

4、自动保存图表

方法 plt.show() 是显示图表

要让程序自动将图表保存到文件中,可调用 plt.savefig() 方法

plt.savefig('scatter.png', bbox_inches='tight')  #保存为scatter.png的图片文件

python数据可视化-matplotlib入门(1)--安装及绘制简单的曲线

预告:下一篇将通过随机函数,类、数列、matplotlib等综合应用,生成一个随机图形。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:python数据可视化-matplotlib入门(1)–安装及绘制简单的曲线 - Python技术站

(0)
上一篇 2023年4月2日
下一篇 2023年4月2日

相关文章

  • Python数据分析–Numpy常用函数介绍(7)–Numpy中矩阵和通用函数

    在NumPy中,矩阵是 ndarray 的子类,与数学概念中的矩阵一样,NumPy中的矩阵也是二维的,可以使用 mat 、 matrix 以及 bmat 函数来创建矩阵。 一、创建矩阵 mat 函数创建矩阵时,若输入已为 matrix 或 ndarray 对象,则不会为它们创建副本。 因此,调用 mat() 函数和调用 matrix(data, copy=F…

    2023年4月2日
    00
  • python入门基础(12)–文件的读写操作

    文本文件可存储的数据量多、每当需要分析或修改存储在文件中的信息时,读取文件都很有用,对数据分析应用程序 处理文件,让程序能够快速地分析大量的数据处理文件和保存数据可让你的程序使用起来更容易 一、从文件中读取数据1)读取整个文件:先创建一个任意的文本文件,设置任意行,任意个数据,命名为data.txt,如下所示: 415926535897 9323846264…

    2023年4月2日
    00
  • python入门基础(5)–数值列表、切片及元组

    列表也非常适合存储一组数字,尤其是大数据处理,处理的几乎都是由数字(如气温、距离、人口数量、经济等)组成的集合。 Python提供很多工具,在数据可视化中,可高效地处理数字列表。 一、数值列表    range() 让你能够轻松地生成一系列的数字 for value in range(1,6):    print(value)# 显示结果为1,2,3,4,5…

    2023年4月2日
    00
  • python入门基础(1)—安装

      说明:0基础,那就先练习python语言基础知识,等基础知识牢固了,再对各开发平台分别进行介绍。这里只介绍两个简单而又容易搭建开发平台Anaconda和pycharm   Anaconda是一个开源的Python发行版本,包括Conda、Python以及一堆工具包,比如:numpy、pandas等等180多个科学包及其依赖项,因后期涉及数据处理及深度学习…

    2023年4月2日
    00
  • Python数据分析–Numpy常用函数介绍(1)–工具安装及Numpy介绍

    Anaconda 是一个跨平台的版本,通过命令行来管理安装包。进行大规模数据处理、预测分析和科学计算。它包括近 200 个工具包,大数据处理需要用到的常见包有 NumPy 、 SciPy 、 pandas 、 IPython 、 Matplotlib 、 Scikit-learn 、gensim、nltk、networkx、beautifulsoup4和st…

    2023年4月2日
    00
  • django基础02–一个基于数据库的小项目

    摘要:简单修改、增加部分页面,了解django开发的过程。(Python 3.9.12,django 4.0.4 ) 接前篇,通过命令: django-admin startproject myWebSite 创立了新的站点,cd myWebSite进入到站点根目录,并用命令python manage.py runserver 8080(或其他端口号) 就可…

    2023年4月2日
    00
  • python入门基础(11)–类的导入、继承及使用

    在上篇“python中的类的创建、使用和继承”中,创建了Person()和Student()两个类,最后才是程序执行主体,如下:  class Person(): #创建一个person类,父类必须包含在当前文件中,且位于子类前面。 def __init__(self, name, age,hometown): #父类 self.name = name se…

    2023年4月2日
    00
  • Python数据分析–Numpy常用函数介绍(6)–Numpy中与股票成交量有关的计算

            成交量(volume)是投资中一个非常重要的变量,它是指在某一时段内具体的交易数,可以在分时图中绘制,包括日线图、周线图、月线图甚至是5分钟、30分钟、60分钟图中绘制。   股票市场成交量的变化反映了资金进出市场的情况,成交量是判断市场走势的重要指标。一般情况下,成交量大且价格上涨的股票,趋势向好。成交量持续低迷时,一般出现在熊市或股票整理…

    2023年4月2日
    00
合作推广
合作推广
分享本页
返回顶部