近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

前言

最近天气异常暴热,看到某些地方地表温度居然达到70°,这就离谱
所以就想采集一下天气的数据,做个可视化图,回忆一下去年的天气情况

近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

开发环境

  • python 3.8 运行代码
  • pycharm 2021.2 辅助敲代码
  • requests 第三方模块

1. 发送请求

url = 'https://tianqi.2345.com/Pc/GetHistory?areaInfo%5BareaId%5D=54511&areaInfo%5BareaType%5D=2&date%5Byear%5D=2022&date%5Bmonth%5D=5'
response = requests.get(url)
print(response)

 

返回<Response [200]>: 请求成功

近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

2. 获取数据

print(response.json())

 

近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

3. 解析数据 天气信息提取出来

结构化数据解析:Python字典取值
非结构化数据解析:网页结构

json_data = response.json()
html_data = json_data['data']
select = parsel.Selector(html_data)
trs = select.css('table tr')
for tr in trs[1:]:
    # 网页结构
    # html网页 <td>asdfwaefaewfweafwaef</td> <a></a> <div></div>
    # ::text: 我需要这个 标签里面的文本内容
    td = tr.css('td::text').getall()
    print(td)

 

4. 保存数据

with open('天气数据.csv', encoding='utf-8', mode='a', newline='') as f:
    csv_writer = csv.writer(f)
    csv_writer.writerow(td)

 

近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下
近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

数据可视化效果

读取数据

data = pd.read_csv('天气数据.csv')
data

 

近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

分割日期/星期

data[['日期','星期']] = data['日期'].str.split(' ',expand=True,n=1)
data

 

近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

去除多余字符

data[['最高温度','最低温度']] = data[['最高温度','最低温度']].apply(lambda x: x.str.replace('°',''))
data.head()

 

近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

北上广深2021年10月份天气热力图分布

import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import seaborn as sns

#设置全局默认字体 为 雅黑
plt.rcParams['font.family'] = ['Microsoft YaHei'] 
# 设置全局轴标签字典大小
plt.rcParams["axes.labelsize"] = 14  
# 设置背景
sns.set_style("darkgrid",{"font.family":['Microsoft YaHei', 'SimHei']})  
# 设置画布长宽 和 dpi
plt.figure(figsize=(18,8),dpi=100)
# 自定义色卡
cmap = mcolors.LinearSegmentedColormap.from_list("n",['#95B359','#D3CF63','#E0991D','#D96161','#A257D0','#7B1216']) 
# 绘制热力图

ax = sns.heatmap(data_pivot, cmap=cmap, vmax=30, 
                 annot=True, # 热力图上显示数值
                 linewidths=0.5,
                ) 
# 将x轴刻度放在最上面
ax.xaxis.set_ticks_position('top') 
plt.title('北京最近10个月天气分布',fontsize=16) #图片标题文本和字体大小
plt.show()

 

近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下
近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下
近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

北京2021年每日最高最低温度变化

color0 = ['#FF76A2','#24ACE6']
color_js0 = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: '#FFC0CB'}, {offset: 1, color: '#ed1941'}], false)"""
color_js1 = """new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: '#FFFFFF'}, {offset: 1, color: '#009ad6'}], false)"""

tl = Timeline()
for i in range(0,len(data_bj)):
    coordy_high = list(data_bj['最高温度'])[i]
    coordx = list(data_bj['日期'])[i]
    coordy_low = list(data_bj['最低温度'])[i]
    x_max = list(data_bj['日期'])[i]+datetime.timedelta(days=10)
    y_max = int(max(list(data_bj['最高温度'])[0:i+1]))+3
    y_min = int(min(list(data_bj['最低温度'])[0:i+1]))-3
    title_date = list(data_bj['日期'])[i].strftime('%Y-%m-%d')
    c = (
        Line(
            init_opts=opts.InitOpts(
            theme='dark',
            #设置动画
            animation_opts=opts.AnimationOpts(animation_delay_update=800),#(animation_delay=1000, animation_easing="elasticOut"),
            #设置宽度、高度
            width='1500px',
            height='900px', )
        )
        .add_xaxis(list(data_bj['日期'])[0:i])
        .add_yaxis(
            series_name="",
            y_axis=list(data_bj['最高温度'])[0:i], is_smooth=True,is_symbol_show=False,
            linestyle_opts={
                   'normal': {
                       'width': 3,
                       'shadowColor': 'rgba(0, 0, 0, 0.5)',
                       'shadowBlur': 5,
                       'shadowOffsetY': 10,
                       'shadowOffsetX': 10,
                       'curve': 0.5,
                       'color': JsCode(color_js0)
                   }
               },
            itemstyle_opts={
            "normal": {
                "color": JsCode(
                    """new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                offset: 0,
                color: '#ed1941'
            }, {
                offset: 1,
                color: '#009ad6'
            }], false)"""
                ),
                "barBorderRadius": [45, 45, 45, 45],
                "shadowColor": "rgb(0, 160, 221)",
            }
        },

        )
        .add_yaxis(
            series_name="",
            y_axis=list(data_bj['最低温度'])[0:i], is_smooth=True,is_symbol_show=False,
#             linestyle_opts=opts.LineStyleOpts(color=color0[1],width=3),
            itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js1)),
            linestyle_opts={
                   'normal': {
                       'width': 3,
                       'shadowColor': 'rgba(0, 0, 0, 0.5)',
                       'shadowBlur': 5,
                       'shadowOffsetY': 10,
                       'shadowOffsetX': 10,
                       'curve': 0.5,
                       'color': JsCode(color_js1)
                   }
               },
        )
        .set_global_opts(
            title_opts=opts.TitleOpts("北京2021年每日最高最低温度变化\n\n{}".format(title_date),pos_left=330,padding=[30,20]),
            xaxis_opts=opts.AxisOpts(type_="time",max_=x_max),#, interval=10,min_=i-5,split_number=20,axistick_opts=opts.AxisTickOpts(length=2500),axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color="grey"))
            yaxis_opts=opts.AxisOpts(min_=y_min,max_=y_max),#坐标轴颜色,axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color="grey"))
        )
    )
    tl.add(c, "{}".format(list(data_bj['日期'])[i]))
    tl.add_schema(
        axis_type='time',
        play_interval=100,  # 表示播放的速度
        pos_bottom="-29px",
        is_loop_play=False, # 是否循环播放
        width="780px",
        pos_left='30px',
        is_auto_play=True,  # 是否自动播放。
        is_timeline_show=False)
tl.render_notebook()

 

近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

北上广深10月份每日最高气温变化

# 背景色
background_color_js = (
    "new echarts.graphic.LinearGradient(0, 0, 0, 1, "
    "[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)"
)

# 线条样式
linestyle_dic = { 'normal': {
                    'width': 4,  
                    'shadowColor': '#696969', 
                    'shadowBlur': 10,  
                    'shadowOffsetY': 10,  
                    'shadowOffsetX': 10,  
                    }
                }
    
timeline = Timeline(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js),
                                            width='980px',height='600px'))


bj, gz, sh, sz= [], [], [], []
all_max = []
x_data = data_10[data_10['城市'] == '北京'][''].tolist()
for d_time in range(len(x_data)):
    bj.append(data_10[(data_10[''] == x_data[d_time]) & (data_10['城市']=='北京')]["最高温度"].values.tolist()[0])
    gz.append(data_10[(data_10[''] == x_data[d_time]) & (data_10['城市']=='广州')]["最高温度"].values.tolist()[0])
    sh.append(data_10[(data_10[''] == x_data[d_time]) & (data_10['城市']=='上海')]["最高温度"].values.tolist()[0])
    sz.append(data_10[(data_10[''] == x_data[d_time]) & (data_10['城市']=='深圳')]["最高温度"].values.tolist()[0])
    
    line = (
        Line(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js),
                                     width='980px',height='600px'))
        .add_xaxis(
            x_data,
                  )
        
        .add_yaxis(
            '北京',
            bj,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
        )
  
        .add_yaxis(
            '广州',
            gz,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
        )
 
        .add_yaxis(
            '上海',
            sh,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
            
        )
 
        .add_yaxis(
            '深圳',
            sz,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
            
        )
        
        .set_series_opts(linestyle_opts=linestyle_dic)
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='北上广深10月份最高气温变化趋势',
                pos_left='center',
                pos_top='2%',
                title_textstyle_opts=opts.TextStyleOpts(color='#DC143C', font_size=20)),
            
            tooltip_opts=opts.TooltipOpts(
                trigger="axis",
                axis_pointer_type="cross",
                background_color="rgba(245, 245, 245, 0.8)",
                border_width=1,
                border_color="#ccc",
                textstyle_opts=opts.TextStyleOpts(color="#000"),
        ),
            xaxis_opts=opts.AxisOpts(
#                 axislabel_opts=opts.LabelOpts(font_size=14, color='red'),
#                 axisline_opts=opts.AxisLineOpts(is_show=True,
#                 linestyle_opts=opts.LineStyleOpts(width=2, color='#DB7093'))
                is_show = False
            ),
                
            
            yaxis_opts=opts.AxisOpts(
                name='最高气温',            
                is_scale=True,
#                 min_= int(min([gz[d_time],sh[d_time],sz[d_time],bj[d_time]])) - 10,
                max_= int(max([gz[d_time],sh[d_time],sz[d_time],bj[d_time]])) + 10,
                name_textstyle_opts=opts.TextStyleOpts(font_size=16,font_weight='bold',color='#5470c6'),
                axislabel_opts=opts.LabelOpts(font_size=13,color='#5470c6'),
                splitline_opts=opts.SplitLineOpts(is_show=True, 
                                                  linestyle_opts=opts.LineStyleOpts(type_='dashed')),
                axisline_opts=opts.AxisLineOpts(is_show=True,
                                        linestyle_opts=opts.LineStyleOpts(width=2, color='#5470c6'))
            ),
            legend_opts=opts.LegendOpts(is_show=True, pos_right='1%', pos_top='2%',
                                        legend_icon='roundRect',orient = 'vertical'),
        ))
    
    timeline.add(line, '{}'.format(x_data[d_time]))

timeline.add_schema(
    play_interval=1000,          # 轮播速度
    is_timeline_show=True,      # 是否显示 timeline 组件
    is_auto_play=True,          # 是否自动播放
    pos_left="0",
    pos_right="0"
)
timeline.render_notebook()

 

近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下 - Python技术站

(0)
上一篇 2023年4月2日 下午5:25
下一篇 2023年4月2日 下午5:25

相关文章

  • Python tkinter 制作文章搜索软件,有没有方便快捷不知道,好玩就行了

    前言 无聊的时候做了一个搜索文章的软件,有没有更加的方便快捷不知道,好玩就行了 环境使用 Python 3.8 Pycharm 模块使用 import requests import tkinter as tk from tkinter import ttk import webbrowser 最终效果 对于本篇文章有疑问的同学可以加【资料白嫖、解答交流群:…

    Python开发 2023年4月2日
    00
  • 英语不好能学好Python吗?Python常用英文单词汇总

    一、交互式环境与print输出 1、print:打印/输出2、coding:编码3、syntax:语法4、error:错误5、invalid:无效6、identifier:名称/标识符7、character :字符 二、字符串的操作 1、user:用户2、name:姓名/名称3、attribute:字段/属性4、value:值5、key:键 三、重复/转换/…

    Python开发 2023年4月2日
    00
  • 羊了个羊第二关通关率不到0.1%?我这里100%

    前言 准备工作 步骤 1 配置fiddler和WX环境 fiddler配置 其他的照我截的图片配置就好 这样 fiddler 就配置好,是不是很简单 WX配置 配置代理 注:端口号得和fiddler配置的一致,也就是这个位置 至于ip地址,使用这个即可 黑框调出方式:win+R,输入cmd然后回车,再输入ipconfig 打开微信,搜索(这时候fiddler…

    Python开发 2023年4月2日
    00
  • Python获取“双十一”商品评论,做词云分析,一个简单的案例教学

    前言 环境使用 Python 3.8 Pycharm 模块使用 requests jieba 结巴分词 wordcloud 词云 数据来源分析 明确需求 <数据来源分析> 采集数据是什么东西? 通过那个url地址得到想要数据的内容 抓包分析: 浏览器自带工具 –> 开发者工具I. F12 或者 鼠标右键点击检查 选择 network 点击…

    Python开发 2023年4月2日
    00
  • Python实现一个简单的自动评论,自动点赞,自动关注脚本

    前言 今天的这个脚本,是一个别人发的外包,交互界面的代码就不在这里说了,但是可以分享下自动评论、自动点赞、自动关注、采集评论和视频的数据是如何实现的 开发环境 python 3.8 运行代码pycharm 2021.2 辅助敲代码requests 第三方模块 原理: 模拟客户端,向服务器发送请求 对于本篇文章有疑问的同学可以加【资料白嫖、解答交流群:7531…

    Python开发 2023年4月2日
    00
  • Python控制自己的手机摄像头拍照,并把照片自动发送到邮箱

    前言 今天这个案例,就是控制自己的摄像头拍照,并且把拍下来的照片,通过邮件发到自己的邮箱里。想完成今天的这个案例,只要记住一个重点:你需要一个摄像头 思路 通过opencv调用摄像头拍照保存图像本地 用email库构造邮件内容,保存的图像以附件形式插入邮件内容 用smtplib库发送邮件到指定邮箱 对于本篇文章有疑问的同学可以加【资料白嫖、解答交流群:910…

    Python开发 2023年4月2日
    00
  • Python采集1000多所世界大学排名数据,制作可视化图

    前言 QS世界大学排名(QS World University Rankings)是由英国一家国际教育市场咨询公司Quacquarelli Symonds(简称QS)所发表的年度世界大学排名 采集全球大学排名数据(源码已分享,求点赞) import requests # 发送请求 import re import csv with open(‘rank.cs…

    Python开发 2023年4月2日
    00
  • 用代码收集每天热点内容信息,并发送到自己的邮箱

    前言 本篇文章内容主要为如何用代码,把你想要的内容,以邮件的形式发送出去内容可以自己完善,还可以设置一个定时发送,或者开机启动自动运行代码 代理注册与使用 注册账号并登录 生成api 将自己电脑加入白名单 http://api.tianqiip.com/white/add?key=xxx&brand=2&sign=xxx&ip=输入自己电脑的ip地址 1. …

    Python开发 2023年4月2日
    00
合作推广
合作推广
分享本页
返回顶部