AtCoder Beginner Contest 300

A - N-choice question (abc300 a)

题目大意

给定一个元素互不相同的数组\(c\)\(a,b\),找到 \(i\)使得 \(c_i = a + b\)

解题思路

直接for循环寻找即可。

神奇的代码
#include <bits/stdc++.h>
using namespace std;
using LL = long long;

int main(void) {
    ios::sync_with_stdio(false); 
    cin.tie(0); cout.tie(0);
    int n, a, b;
    cin >> n >> a >> b;
    for(int i = 0; i < n; ++ i){
        int c;
        cin >> c;
        if (c == a + b){
            cout << i + 1 << '\n';
            return 0;
        }
    }

    return 0;
}


B - Same Map in the RPG World (abc300 b)

题目大意

给定两个矩阵\(A,B\),问能否对 \(A\)进行若干次变换操作得到 \(B\)

变换分两种,一种是将第一列放到最后一列,另一种是将第一行放到最后一行。

解题思路

范围不大,直接枚举所有变换操作判断即可。

如果我们将左右连通,上下连通,那么变换操作实际上不改变每个点的上下左右点。即变换操作可以看成将矩形左上角的点移动。

时间复杂度为\(O(H^2W^2)\)

神奇的代码
#include <bits/stdc++.h>
using namespace std;
using LL = long long;

int main(void) {
    ios::sync_with_stdio(false); 
    cin.tie(0); cout.tie(0);
    int h, w;
    cin >> h >> w;
    vector<string> a(h), b(h);
    for(auto &i : a){
        cin >> i;
    }
    for(auto &i : b){
        cin >> i;
    }
    auto equal = [&](int x, int y){
        for(int i = 0; i < h; ++ i)
            for(int j = 0; j < w; ++ j){
                int X = (x + i) % h;
                int Y = (y + j) % w;
                if (a[X][Y] != b[i][j]){
                    return false;
                }
            }
        return true;
    };
    auto check = [&](){
        for(int i = 0; i < h; ++ i)
            for(int j = 0; j < w; ++ j)
                if (equal(i, j))
                    return true;
        return false;
    };
    if (check()){
        cout << "Yes" << '\n';
    }
    else 
        cout << "No" << '\n';
    return 0;
}


C - Cross (abc300 c)

题目大意

给定一个包含.#的矩形,问由#组成的形如X的最长长度,每个长度的数量。

解题思路

范围不大,枚举X的位置和大小判断即可。

时间复杂度为\(O(HW\min(HW))\)

神奇的代码
#include <bits/stdc++.h>
using namespace std;
using LL = long long;

int main(void) {
    ios::sync_with_stdio(false); 
    cin.tie(0); cout.tie(0);
    int h, w;
    cin >> h >> w;
    vector<string> s(h);
    for(auto &i : s)
        cin >> i;
    int sz = min(h, w);
    vector<int> ans(sz + 1);
    auto check = [&](int x, int y){
        if (s[x][y] != '#')
            return 0;
        for(int i = 0; i <= sz; ++ i){
            for(int dx = -1; dx <= 1; dx += 2)
                for(int dy = -1; dy <= 1; dy += 2){
                    int nx = x + i * dx, ny = y + i * dy;
                    if (nx >= h || nx < 0 || ny < 0 || ny >= w)
                        return i - 1;
                    if (s[nx][ny] != '#')
                        return i - 1;
                }
        }
        return sz;
    };
    for(int i = 0; i < h; ++ i)
        for(int j = 0; j < w; ++ j)
            ans[check(i, j)] ++;
    for(int i = 1; i <= sz; ++ i)
        cout << ans[i] << " \n"[i == sz];

    return 0;
}


D - AABCC (abc300 d)

题目大意

\(1 \sim n\)中能表示成 \(a^2 \times b \times c^2(a < b < c)\)\(a,b,c\)为质数的数的个数。

解题思路

由于\(n \leq 10^{12}\),预处理\(1 \to 10^6\)的质数,然后枚举\(c\)\(a\),计算得到乘积小于等于 \(n\)的最大的 \(b\),此时符合条件的数量就是 \(1 \sim b\)中的质数个数,这个事先预处理即可。

时间复杂度是 \(O(\sqrt{n} \log n)\)

神奇的代码
#include <bits/stdc++.h>
using namespace std;
using LL = long long;
#define FOR(i, x, y) for (decay<decltype(y)>::type i = (x), _##i = (y); i < _##i; ++i)
#define FORD(i, x, y) for (decay<decltype(x)>::type i = (x), _##i = (y); i > _##i; --i)

const LL p_max = 1E6 + 100;
LL pr[p_max], p_sz;
int cnt[p_max];
void get_prime() {
    static bool vis[p_max];
    FOR (i, 2, p_max) {
        if (!vis[i]) {
            pr[p_sz++] = i;
            cnt[i] = 1;
        }
        FOR (j, 0, p_sz) {
            if (pr[j] * i >= p_max) break;
            vis[pr[j] * i] = 1;
            if (i % pr[j] == 0) break;
        }
    }
    FOR(i, 2, p_max)
        cnt[i] += cnt[i - 1];
}

int main(void) {
    ios::sync_with_stdio(false); 
    cin.tie(0); cout.tie(0);
    LL n;
    cin >> n;
    LL ans = 0;
    get_prime();
    for(int i = 0; i < p_sz; ++ i){
        for(int j = 0; j < i; ++ j){
            LL sum = 1ll * pr[i] * pr[i] * pr[j] * pr[j];
            if (sum > n)
                break;
            LL maxb = min(n / sum, pr[i] - 1);
            if (maxb <= pr[j])
                break;
            ans += cnt[maxb] - cnt[pr[j]];
        }
    }
    cout << ans << '\n';

    return 0;
}


E - Dice Product 3 (abc300 e)

题目大意

六面骰子,每面等概率出现。

现在不断掷骰子,直到掷出来的数的乘积大于等于\(N\)

问恰好为 \(N\)的概率。对 \(998244353\)取模。

解题思路

显然\(n\)的质因数只能有 \(2,3,5\)

\(dp[n]\)表示最终是 \(n\)的概率,根据定义, \(dp[n] = \frac{1}{6}dp[\frac{n}{1}] + \frac{1}{6}dp[\frac{n}{2}] + \frac{1}{6}dp[\frac{n}{3}] + \frac{1}{6}dp[\frac{n}{4}] + \frac{1}{6}dp[\frac{n}{5}] + \frac{1}{6}dp[\frac{n}{6}]\),即掷出\(n\)的概率,应当是先掷出 \(\frac{n}{1}\) ,然后再以\(\frac{1}{6}\)的概率掷出 \(1\),或者先掷出 \(\frac{n}{2}\) ,然后再以\(\frac{1}{6}\)的概率掷出 \(2\),依次类推。

当然,如果不整除就没有这部分的概率贡献。

化简一下就是\(dp[n] = \frac{1}{5}dp[\frac{n}{2}] + \frac{1}{5}dp[\frac{n}{3}] + \frac{1}{5}dp[\frac{n}{4}] + \frac{1}{5}dp[\frac{n}{5}] + \frac{1}{5}dp[\frac{n}{6}]\)

因为每次转移状态大小都会除以一个数,所以最终的状态数量应该不会超过\(O(n \log n)\),写个记忆化就可以了。

神奇的代码
#include <bits/stdc++.h>
using namespace std;
using LL = long long;

const int mo = 998244353;

long long qpower(long long a, long long b){
    long long qwq = 1;
    while(b){
        if (b & 1)
            qwq = qwq * a % mo;
        a = a * a % mo;
        b >>= 1;
    }
    return qwq;
}

long long inv(long long x){
    return qpower(x, mo - 2);
}

int main(void) {
    ios::sync_with_stdio(false); 
    cin.tie(0); cout.tie(0);
    LL n, ba;
    cin >> n;
    ba = n;
    int cnt2 = 0, cnt3 = 0, cnt5 = 0;
    while (n % 2 == 0){
        ++ cnt2;
        n /= 2;
    }
    while (n % 3 == 0){
        ++ cnt3;
        n /= 3;
    }
    while (n % 5 == 0){
        ++ cnt5;
        n /= 5;
    }
    if (n != 1)
        cout << 0 << '\n';
    else{
        map<LL, int> cache;
        LL inv5 = inv(5);
        function<LL(LL)> dfs = [&](LL n){
            if (n == 1)
                return 1;
            if (cache.find(n) != cache.end())
                return cache[n];
            LL ans = 0;
            for(int i = 2; i <= 6; ++ i)
                if (n % i == 0){
                    ans = (ans + dfs(n / i));
                    if (ans >= mo)
                        ans -= mo;
                }
            cache[n] = ans * inv5 % mo;
            return cache[n];
        };
        cout << dfs(ba) << '\n';

    }

    return 0;
}


F - More Holidays (abc300 f)

题目大意

给定一个包含xo的字符串\(t\),它由一个长度为\(n\)的串\(s\)重复 \(m\)次拼接得到。要求将恰好 \(k\)x变成o,问连续o的最大长度。

解题思路

x的位置都记录下来,容易发现我们进行变换的x肯定是一组连续的x

我们枚举进行变化的第一个x,然后找到之后的第 \(k\)x,之间的长度取个最大值即可。

虽然这个x\(nm = 10^{14}\)个,但由于串是重复拼接得到的,第二部分的串的 x实际上跟第一个串的情况一致(并且不会更优),因此我们只需要枚举第一个串x和第二个串的第一个x(注意这个情况,会利用第一个串最后一个x和第二个串的第一个x之间的o,可能从第一个串的第一个x更优)。

神奇的代码
#include <bits/stdc++.h>
using namespace std;
using LL = long long;

int main(void) {
    ios::sync_with_stdio(false); 
    cin.tie(0); cout.tie(0);
    int n, m;
    LL k;
    cin >> n >> m >> k;
    string s;
    cin >> s;
    vector<int> pos;
    LL cnt = 0;
    for(int i = 0; i < n; ++ i){
        cnt += (s[i] == 'x');
        if (s[i] == 'x')
            pos.push_back(i);
    }
    LL ans = 0;
    LL la = -1;
    auto solve = [&](int st){
        LL left = pos.size() - st;
        LL minn = min(left, k);
        left = k - minn;
        if (left == 0){
            if (st + k == pos.size()){
                return 1ll * n + pos[0] * (m > 1);
            }else {
                return 1ll * pos[st + k];
            }
        }
        LL shift = left / cnt + 1;
        LL remain = left % cnt;
        if (remain == 0 && shift == m){
            return shift * n;
        }else if (shift > m || shift == m && remain > 0)
            return 0ll;
        else{
            return shift * n + pos[remain];
        }
    };
    for(int i = 0; i < pos.size(); ++ i){
        LL r = solve(i);
        ans = max(ans, r - la - 1);
        la = pos[i];
    }
    if (m > 1){
        m -= 1;
        LL r = solve(0);
        ans = max(ans, n + r - pos.back() - 1);
    }
    cout << ans << '\n';

    return 0;
}

求第\(k\)x可能有些情况要讨论,官方题解采用的二分法就可以以\(\log\)的代价避免这个讨论。

x的数量和串\(s\)的长度是同一个数量级,我们也可以枚举答案的左端点,然后二分找到恰好包含\(k\)x的最右端点,长度取个最大值。

神奇的代码
#include <bits/stdc++.h>
using namespace std;
using LL = long long;

const LL inf = 1e18;

int main(void) {
    ios::sync_with_stdio(false); 
    cin.tie(0); cout.tie(0);
    int n, m;
    LL k;
    cin >> n >> m >> k;
    string s;
    cin >> s;
    vector<int> sum(n);
    LL cnt = 0;
    for(int i = 0; i < n; ++ i){
        if (s[i] == 'x'){
            sum[i] = 1;
        }
    }
    partial_sum(sum.begin(), sum.end(), sum.begin());
    LL ans = 0;
    LL la = -1;
    auto count = [&](LL pos){
        LL shift = pos / n, remain = pos % n;
        return shift * sum.back() + sum[remain] * (shift != m);
    };
    auto solve = [&](int st){
        LL l = st, r = 1ll * n * m;
        LL down = st == 0 ? 0 : sum[st - 1];
        while(l + 1 < r){
            LL mid = (l + r) >> 1;
            if (count(mid) - down <= k)
                l = mid;
            else 
                r = mid;
        };
        return r;
    };
    for(int i = 0; i < n; ++ i){
        LL r = solve(i);
        ans = max(ans, r - i);
    }
    cout << ans << '\n';

    return 0;
}


G - P-smooth number (abc300 g)

题目大意

<++>

解题思路

<++>

神奇的代码


Ex - Fibonacci: Revisited (abc300 h)

题目大意

<++>

解题思路

<++>

神奇的代码


原文链接:https://www.cnblogs.com/Lanly/p/17364761.html

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:AtCoder Beginner Contest 300 - Python技术站

(0)
上一篇 2023年4月27日
下一篇 2023年4月30日

相关文章

  • Javascript中扁平化数据结构与JSON树形结构转换详解

    一、扁平化数据结构 扁平化数据结构是指将一个JSON树形结构数据转换为一个扁平化的对象数组,通常用于在数据操作中进行遍历和检索,方便数据的处理和展示。 例如,有一个JSON树形结构数据如下: { "name": "中国", "children": [ { "name": &quo…

    数据结构 2023年5月17日
    00
  • C++LeetCode数据结构基础详解

    C++LeetCode数据结构基础详解攻略 什么是LeetCode? LeetCode是一个专门为程序员提供的算法题平台。平台上汇集了各种算法、数据结构和编程题,用户可以在平台上挑战各种难度的算法用来提高自己的编程能力和算法素养。 如何学习LeetCode? 学习LeetCode的关键是掌握数据结构和算法。下面介绍如何结合具体的C++代码来学习LeetCod…

    数据结构 2023年5月17日
    00
  • Python数据结构之Array用法实例

    Python数据结构之Array用法实例 在Python中,Array是一种很有用的数据结构类型。它可以通过简单的方式存储一系列数据,提供快速的索引访问和高效的操作。本文将详细探讨Python中Array的用法,包括创建Array、插入、删除、修改、查找和遍历等。 创建Array 要创建一个Array,需要使用array模块。在调用前,需要首先导入该模块。A…

    数据结构 2023年5月17日
    00
  • C++数据结构红黑树全面分析

    C++数据结构红黑树全面分析攻略 红黑树是一种自平衡二叉搜索树,它可以保证最坏情况下的操作时间复杂度为O(logn),是一种非常高效的数据结构,而且广泛应用于STL等库的实现中。本文将详细介绍红黑树的基本概念、插入、删除、查找等相关操作,帮助读者深入理解和掌握红黑树的实现过程。 基本概念 红黑树是一种特殊的二叉搜索树,它的每个节点要么是红色,要么是黑色。同时…

    数据结构 2023年5月17日
    00
  • React前端解链表数据结构示例详解

    我将为您详细讲解“React前端解链表数据结构示例详解”的完整攻略。 React前端解链表数据结构示例详解 一、前置知识 在学习本篇文章之前,您需要掌握以下前置知识: 基本的 JavaScript 语法 React 中的组件概念和生命周期 链表数据结构的基本概念和操作方法 如果您对以上知识点还不是很熟悉,可以先自学相关知识再来阅读本文。 二、链表数据结构简介…

    数据结构 2023年5月17日
    00
  • 深入了解Python并发编程

    以下是关于“深入了解Python并发编程”的完整攻略: 简介 Python并发编程是指在同一时间内执行多个任务的能力。Python提供了多种并发编程方式,包括多线程、多进程、协程等。在本教程中,我们将深入了解Python并发编程的原理和使用方法,并提供两个示例。 原理 Python并发编程的基本原理是利用多个执行单元同时执行任务,从而提高程序的执行效率。Py…

    python 2023年5月14日
    00
  • 字典树的基本知识及使用C语言的相关实现

    字典树的基本知识 字典树,英文名为Trie树,又称单词查找树或键树,是一种树形数据结构,用于表示关联数组或映射。它的优点是,可以大大减少无谓的字符串比较,查询效率比哈希表高。 字典树的核心概念是节点,每个节点包含一个字符和指向子节点的指针。根节点为空字符,每个字符串以一个独立的路径插入节点。如果一个字符串是另一个字符串的前缀,那么这个字符串的节点是另一个字符…

    数据结构 2023年5月17日
    00
  • Python猜数字算法题详解

    下面是详细讲解“Python猜数字算法题详解”的完整攻略,包括算法原理、Python实现和两个示例说明。 算法原理 猜数字算法题是一种经典的算法题,其基本思想是通过二分查找的方式,逐步缩小猜测范围,最终猜中目标数字。具体实现过程如下: 首先确定猜测范围,通常为1到100之间的整数。 然后猜测中间的数字,即猜测范围的中间值。 根据猜测结果,如果猜中了目标数字,…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部