下面是关于详解pytorch 0.4.0迁移指南的完整攻略。
解决方案
PyTorch 0.4.0是PyTorch的一个重要版本,其中包含了许多新特性和改进。但是,由于一些API的变化,需要进行一些修改才能使旧代码在新版本中正常运行。以下是详解pytorch 0.4.0迁移指南的详细攻略:
步骤1:检查代码
在升级PyTorch之前,应该先检查代码是否存在任何问题。可以使用以下命令检查代码:
python -m torch.utils.collect_env
步骤2:修改代码
在PyTorch 0.4.0中,一些API发生了变化。以下是一些需要修改的API:
1. Variable
在PyTorch 0.4.0中,Variable已经被弃用,应该使用Tensor代替。例如:
# 旧代码
x = Variable(torch.randn(5, 5))
y = Variable(torch.randn(5, 5))
z = x + y
# 新代码
x = torch.randn(5, 5)
y = torch.randn(5, 5)
z = x + y
2. DataParallel
在PyTorch 0.4.0中,DataParallel的使用方式发生了变化。以下是一个示例:
# 旧代码
model = nn.DataParallel(model, device_ids=[0, 1])
# 新代码
model = nn.DataParallel(model, device_ids=[0, 1])
3. Variable.data
在PyTorch 0.4.0中,Variable.data已经被弃用,应该使用Tensor代替。例如:
# 旧代码
x = Variable(torch.randn(5, 5))
y = x.data
# 新代码
x = torch.randn(5, 5)
y = x
4. Variable.grad
在PyTorch 0.4.0中,Variable.grad已经被弃用,应该使用Tensor.grad代替。例如:
# 旧代码
x = Variable(torch.randn(5, 5), requires_grad=True)
y = x.sum()
y.backward()
z = x.grad
# 新代码
x = torch.randn(5, 5, requires_grad=True)
y = x.sum()
y.backward()
z = x.grad
示例说明1
以下是一个使用PyTorch 0.3.0编写的神经网络模型:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 4 * 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 4 * 4)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
以下是使用PyTorch 0.4.0修改后的代码:
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 4 * 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 4 * 4)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
示例说明2
以下是一个使用PyTorch 0.3.0编写的训练代码:
import torch
import torch.nn as nn
import torch.optim as optim
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
x = x.view(-1, 784)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
net = Net()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
以下是使用PyTorch 0.4.0修改后的代码:
import torch
import torch.nn as nn
import torch.optim as optim
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
x = x.view(-1, 784)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
net = Net()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
结论
在本文中,我们详细介绍了pytorch 0.4.0迁移指南的完整攻略。提供了示例说明可以根据具体的需求进行学习和实践。需要注意的是,应该根据具体的应用场景选择适合的模型和参数,以获得更好的效果。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:详解pytorch 0.4.0迁移指南 - Python技术站