上代码:
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets(\'MNIST_data\',one_hot=True) #每个批次的大小 batch_size = 100 #计算一共有多少个批次 n_batch = mnist.train.num_examples // batch_size #参数概要 def variable_summaries(var): with tf.name_scope(\'summaries\'): mean = tf.reduce_mean(var) tf.summary.scalar(\'mean\', mean)#平均值 with tf.name_scope(\'stddev\'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar(\'stddev\', stddev)#标准差 tf.summary.scalar(\'max\', tf.reduce_max(var))#最大值 tf.summary.scalar(\'min\', tf.reduce_min(var))#最小值 tf.summary.histogram(\'histogram\', var)#直方图 #初始化权值 def weight_variable(shape,name): initial = tf.truncated_normal(shape,stddev=0.1)#生成一个截断的正态分布 return tf.Variable(initial,name=name) #初始化偏置 def bias_variable(shape,name): initial = tf.constant(0.1,shape=shape) return tf.Variable(initial,name=name) #卷积层 def conv2d(x,W): #x input tensor of shape `[batch, in_height, in_width, in_channels]` #W filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels] #`strides[0] = strides[3] = 1`. strides[1]代表x方向的步长,strides[2]代表y方向的步长 #padding: A `string` from: `"SAME", "VALID"` return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding=\'SAME\') #池化层 def max_pool_2x2(x): #ksize [1,x,y,1] return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding=\'SAME\') #命名空间 with tf.name_scope(\'input\'): #定义两个placeholder x = tf.placeholder(tf.float32,[None,784],name=\'x-input\') y = tf.placeholder(tf.float32,[None,10],name=\'y-input\') with tf.name_scope(\'x_image\'): #改变x的格式转为4D的向量[batch, in_height, in_width, in_channels]` x_image = tf.reshape(x,[-1,28,28,1],name=\'x_image\') with tf.name_scope(\'Conv1\'): #初始化第一个卷积层的权值和偏置 with tf.name_scope(\'W_conv1\'): W_conv1 = weight_variable([5,5,1,32],name=\'W_conv1\')#5*5的采样窗口,32个卷积核从1个平面抽取特征 with tf.name_scope(\'b_conv1\'): b_conv1 = bias_variable([32],name=\'b_conv1\')#每一个卷积核一个偏置值 #把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数 with tf.name_scope(\'conv2d_1\'): conv2d_1 = conv2d(x_image,W_conv1) + b_conv1 with tf.name_scope(\'relu\'): h_conv1 = tf.nn.relu(conv2d_1) with tf.name_scope(\'h_pool1\'): h_pool1 = max_pool_2x2(h_conv1)#进行max-pooling with tf.name_scope(\'Conv2\'): #初始化第二个卷积层的权值和偏置 with tf.name_scope(\'W_conv2\'): W_conv2 = weight_variable([5,5,32,64],name=\'W_conv2\')#5*5的采样窗口,64个卷积核从32个平面抽取特征 with tf.name_scope(\'b_conv2\'): b_conv2 = bias_variable([64],name=\'b_conv2\')#每一个卷积核一个偏置值 #把h_pool1和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数 with tf.name_scope(\'conv2d_2\'): conv2d_2 = conv2d(h_pool1,W_conv2) + b_conv2 with tf.name_scope(\'relu\'): h_conv2 = tf.nn.relu(conv2d_2) with tf.name_scope(\'h_pool2\'): h_pool2 = max_pool_2x2(h_conv2)#进行max-pooling #28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14 #第二次卷积后为14*14,第二次池化后变为了7*7 #进过上面操作后得到64张7*7的平面 with tf.name_scope(\'fc1\'): #初始化第一个全连接层的权值 with tf.name_scope(\'W_fc1\'): W_fc1 = weight_variable([7*7*64,1024],name=\'W_fc1\')#上一场有7*7*64个神经元,全连接层有1024个神经元 with tf.name_scope(\'b_fc1\'): b_fc1 = bias_variable([1024],name=\'b_fc1\')#1024个节点 #把池化层2的输出扁平化为1维 with tf.name_scope(\'h_pool2_flat\'): h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64],name=\'h_pool2_flat\') #求第一个全连接层的输出 with tf.name_scope(\'wx_plus_b1\'): wx_plus_b1 = tf.matmul(h_pool2_flat,W_fc1) + b_fc1 with tf.name_scope(\'relu\'): h_fc1 = tf.nn.relu(wx_plus_b1) #keep_prob用来表示神经元的输出概率 with tf.name_scope(\'keep_prob\'): keep_prob = tf.placeholder(tf.float32,name=\'keep_prob\') with tf.name_scope(\'h_fc1_drop\'): h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob,name=\'h_fc1_drop\') with tf.name_scope(\'fc2\'): #初始化第二个全连接层 with tf.name_scope(\'W_fc2\'): W_fc2 = weight_variable([1024,10],name=\'W_fc2\') with tf.name_scope(\'b_fc2\'): b_fc2 = bias_variable([10],name=\'b_fc2\') with tf.name_scope(\'wx_plus_b2\'): wx_plus_b2 = tf.matmul(h_fc1_drop,W_fc2) + b_fc2 with tf.name_scope(\'softmax\'): #计算输出 prediction = tf.nn.softmax(wx_plus_b2) #交叉熵代价函数 with tf.name_scope(\'cross_entropy\'): cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y,logits=prediction),name=\'cross_entropy\') tf.summary.scalar(\'cross_entropy\',cross_entropy) #使用AdamOptimizer进行优化 with tf.name_scope(\'train\'): train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #求准确率 with tf.name_scope(\'accuracy\'): with tf.name_scope(\'correct_prediction\'): #结果存放在一个布尔列表中 correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))#argmax返回一维张量中最大的值所在的位置 with tf.name_scope(\'accuracy\'): #求准确率 accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) tf.summary.scalar(\'accuracy\',accuracy) #合并所有的summary merged = tf.summary.merge_all() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) train_writer = tf.summary.FileWriter(\'logs/train\',sess.graph) test_writer = tf.summary.FileWriter(\'logs/test\',sess.graph) for i in range(1001): #训练模型 batch_xs,batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.5}) #记录训练集计算的参数 summary = sess.run(merged,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0}) train_writer.add_summary(summary,i) #记录测试集计算的参数 batch_xs,batch_ys = mnist.test.next_batch(batch_size) summary = sess.run(merged,feed_dict={x:batch_xs,y:batch_ys,keep_prob:1.0}) test_writer.add_summary(summary,i) if i%100==0: test_acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}) train_acc = sess.run(accuracy,feed_dict={x:mnist.train.images[:10000],y:mnist.train.labels[:10000],keep_prob:1.0}) print ("Iter " + str(i) + ", Testing Accuracy= " + str(test_acc) + ", Training Accuracy= " + str(train_acc))
打开cmd,进入当前文件夹,执行tensorboard --logdir=\'C:\Users\FELIX\Desktop\tensor学习\logs\'
就可以进入tensorboard可视化界面了。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:TensorFlow(十):卷积神经网络实现手写数字识别以及可视化 - Python技术站