拷贝convert_imageset,生成新工程convert_imageset_multi_label

caffe多标签输入和多任务学习

 

修改源码

std::ifstream infile(argv[2]);
    std::vector<std::pair<std::string, std::vector<float>> > lines;
    std::string filename;
    std::string label_count_string = argv[5];
    int label_count = std::atoi(label_count_string.c_str());
    std::vector<float> label(label_count);
    while (infile >> filename) {
        for (int i = 0; i < label_count; i++)
            infile >> label[i];
        lines.push_back(std::make_pair(filename, label));
    }
    if (FLAGS_shuffle) {
        // randomly shuffle data
        LOG(INFO) << "Shuffling data";
        shuffle(lines.begin(), lines.end());
    }
    LOG(INFO) << "A total of " << lines.size() << " images.";

    if (encode_type.size() && !encoded)
        LOG(INFO) << "encode_type specified, assuming encoded=true.";

    int resize_height = std::max<int>(0, FLAGS_resize_height);
    int resize_width = std::max<int>(0, FLAGS_resize_width);

    // Create new DB
    scoped_ptr<db::DB> db_image(db::GetDB(FLAGS_backend));
    scoped_ptr<db::DB> db_label(db::GetDB(FLAGS_backend));
    db_image->Open(argv[3], db::NEW);
    db_label->Open(argv[4], db::NEW);
    scoped_ptr<db::Transaction> txn_image(db_image->NewTransaction());
    scoped_ptr<db::Transaction> txn_label(db_label->NewTransaction());

//   // Create new DB
//   scoped_ptr<db::DB> db(db::GetDB(FLAGS_backend));
//   db->Open(argv[3], db::NEW);
//   scoped_ptr<db::Transaction> txn(db->NewTransaction());

  // Storing to db
  std::string root_folder(argv[1]);
  Datum datum_image;
  Datum datum_label;
  int count = 0;
  int data_size = 0;
  bool data_size_initialized = false;

  for (int line_id = 0; line_id < lines.size(); ++line_id) {
    bool status;
    std::string enc = encode_type;
    if (encoded && !enc.size()) {
      // Guess the encoding type from the file name
      string fn = lines[line_id].first;
      size_t p = fn.rfind('.');
      if ( p == fn.npos )
        LOG(WARNING) << "Failed to guess the encoding of '" << fn << "'";
      enc = fn.substr(p);
      std::transform(enc.begin(), enc.end(), enc.begin(), ::tolower);
    }
    status = ReadImageToDatum(root_folder + lines[line_id].first,
        lines[line_id].second[0], resize_height, resize_width, is_color,
        enc, &datum_image);
    if (status == false) continue;
    if (check_size) {
      if (!data_size_initialized) {
          data_size = datum_image.channels() * datum_image.height() * datum_image.width();
        data_size_initialized = true;
      } else {
          const std::string& data = datum_image.data();
        CHECK_EQ(data.size(), data_size) << "Incorrect data field size "
            << data.size();
      }
    }
    // sequential
    string key_str = caffe::format_int(line_id, 8) + "_" + lines[line_id].first;

    // Put in db
    string out;
    CHECK(datum_image.SerializeToString(&out));
    txn_image->Put(key_str, out);
    //////////////////////////////////////////////////////////////////////////    
    
    datum_label.set_channels(label_count);
    datum_label.set_height(1);
    datum_label.set_width(1);
    
    datum_label.clear_data();
    datum_label.clear_float_data();
    datum_label.set_encoded(false);
    std::vector<float> label_vec = lines[line_id].second;
    for (int i = 0; i < label_vec.size();i++)
    {
        datum_label.add_float_data(label_vec[i]);
    }
    string out_label;
    CHECK(datum_label.SerializeToString(&out_label));
    txn_label->Put(key_str, out_label);
    //////////////////////////////////////////////////////////////////////////
    if (++count % 1000 == 0) {
      // Commit db
      txn_image->Commit();
      txn_image.reset(db_image->NewTransaction());

      txn_label->Commit();
      txn_label.reset(db_label->NewTransaction());

      LOG(INFO) << "Processed " << count << " files.";
    }
  }
  // write the last batch
  if (count % 1000 != 0) {
    txn_image->Commit();
    txn_label->Commit();
    LOG(INFO) << "Processed " << count << " files.";
  }

上述方式使用了二个data层,编译之后,使用如下方式生成:

Buildx64Release>convert_imageset_multi_label.exe ./ train.txt data/train_image_lmdb data/train_label_lmdb 4

train.txt文件格式如下:

data/00A03AF5-41C7-4966-8EF3-8B2C90DCF75C_cgfn.jpg 1 2 3 6
data/00A15FBD-9637-44C5-B2E7-81611263C88C_tmph.jpg 2 5 6 4

网络配置文件需要加入slice层将标签分割开来

layer {
  name: "slice"
  type: "Slice"
  bottom: "label"
  top: "label_1"
  top: "label_2"
  top: "label_3"
  top: "label_4"
  slice_param {
    axis: 1
    slice_point: 1
    slice_point: 2
    slice_point: 3
  }
}

 

caffe多标签输入和多任务学习

也可以通过python直接生成lmdb格式,其方式如下:

# -*- coding: utf-8 -*-
"""
Created on Sat Dec 24 20:57:28 2016

@author: zhouly
"""

import lmdb
from skimage import io
import numpy as np 
import sys
caffe_root = '../../'
sys.path.insert(0, caffe_root + '/python')
import caffe
import cv2
root = '../../'
file_input=open(root+'data/train.txt','r')
in_image_db=lmdb.open(root+'examples/99/train_image_lmdb', map_size=int(1e12))
in_label_db=lmdb.open(root+'examples/99/train_label_lmdb', map_size=int(1e12))
in_image_txn = in_image_db.begin(write=True)
in_label_txn = in_label_db.begin(write=True)
for in_idx, in_ in enumerate(file_input):
    content = in_.strip()
    content = content.split(' ')
    im_file = root + 'data/verification/' + content[0]
    try:
        im = io.imread(im_file)
    except:
        print '-------------------------', im_file
        continue
    im = im[:,:, 3]
    im = cv2.resize(im, (224, 224), interpolation=cv2.INTER_LINEAR)
    data = np.zeros((3, 224, 224), np.uint8)
    data[0, :, :] = im[:, :]
    data[1, :, :] = im[:, :]
    data[2, :, :] = im[:, :]
    im_dat = caffe.io.array_to_datum(data)
    in_image_txn.put('{:0>10d}'.format(in_idx), im_dat.SerializeToString())
    print 'data train: {} [{}]'.format(content[0], in_idx + 1)
    del im_file, im, im_dat, data

    target_label = np.zeros((4, 1, 1))
    target_label[0, 0, 0] = int(content[1])
    target_label[1, 0, 0] = int(content[2])
    target_label[2, 0, 0] = int(content[3])
    target_label[3, 0, 0] = int(content[4])
    label_data = caffe.io.array_to_datum(target_label)
    in_label_txn.put('{:0>10d}'.format(in_idx), label_data.SerializeToString())
    del target_label, label_data
in_image_txn.commit()
in_label_txn.commit()
in_image_db.close()
in_label_db.close()
file_input.close()