概述
官网:https://pjreddie.com/darknet/
Darknet:【Github】
C#封装代码:【Github】
YOLO: 是实现实时物体检测的系统,Darknet是基于YOLO的框架
采用C#语言对 YOLOv4 目标检测算法封装,将模型在实际应用系统中落地,实现模型在线远程调用。
环境准备
本章只讲解如何对YOLOv4封装进行详解,具体环境安装过程不做介绍
查看你的GPU计算能力是否支持 >= 3.0:【点击查看】
Windows运行要求
- CMake >= 3.12: 【点击下载】
- CUDA >= 10.0: 【点击下载】
- OpenCV >= 2.4: 【点击下载】
- cuDNN >= 7.0: 【点击下载】
- Visual Studio 2017/2019: 【点击下载】
我所使用的环境
- 系统版本:Windows 10 专业版
- 显卡:GTX 1050 Ti
- CMake版本:3.18.2
- CUDA版本:10.1
- OpenCV版本:4.4.0
- cuDNN版本:10.1
- MSVC 2017/2019: Visual Studio 2019
程序代码准备
源代码下载
下载地址:【Darknet】
使用Git
git clone https://github.com/AlexeyAB/darknet
cd darknet
代码结构
将YOLOv4编译为DLL
详细教程:【点击查看】,这个教程描述的很详细。
进入 darknetbuilddarknet
目录,打开解决方案 yolo_cpp_dll.sln
设置Windows SDK版本和平台工具集为当前系统安装版本
设置Release和x64
然后执行以下操作:Build-> Build yolo_cpp_dll
已完成生成项目“yolo_cpp_dll.vcxproj”的操作。
========== 生成: 成功 1 个,失败 0 个,最新 0 个,跳过 0 个 ==========
在打包DLL的过程中可能遇到如下问题
C1041
无法打开程序数据库“D:代码管理Cdarknetbuilddarknetx64DLL_Releasevc142.pdb”;如果要将多个 CL.EXE 写入同一个 .PDB 文件,请使用 /FS yolo_cpp_dll C:UsersadministratorAppDataLocalTemptmpxft_00005db0_00000000-6_dropout_layer_kernels.compute_75.cudafe1.cpp 1
MSB3721
命令“"C:Program FilesNVIDIA GPU Computing ToolkitCUDAv10.1binnvcc.exe" -gencode=arch=compute_30,code="sm_30,compute_30" -gencode=arch=compute_75,code="sm_75,compute_75" --use-local-env -ccbin "C:Program Files (x86)Microsoft Visual Studio2019CommunityVCToolsMSVC14.27.29110binHostX86x64" -x cu -IC:opencvbuildinclude -IC:opencv_3.0opencvbuildinclude -I....include -I....3rdpartystbinclude -I....3rdpartypthreadsinclude -I"C:Program FilesNVIDIA GPU Computing ToolkitCUDAv10.1include" -I"C:Program FilesNVIDIA GPU Computing ToolkitCUDAv10.1include" -Iinclude -Iinclude -I"C:Program FilesNVIDIA GPU Computing ToolkitCUDAv10.1include" --keep-dir x64Release -maxrregcount=0 --machine 64 --compile -cudart static -DCUDNN_HALF -DCUDNN -DGPU -DLIB_EXPORTS -D_TIMESPEC_DEFINED -D_SCL_SECURE_NO_WARNINGS -D_CRT_SECURE_NO_WARNINGS -DWIN32 -DNDEBUG -D_CONSOLE -D_LIB -D_WINDLL -D_MBCS -Xcompiler "/EHsc /W3 /nologo /O2 /Fdx64DLL_Releasevc142.pdb /Zi /MD " -o x64DLL_Releasedropout_layer_kernels.cu.obj "D:darknetsrcdropout_layer_kernels.cu"”已退出,返回代码为 2。 yolo_cpp_dll C:Program Files (x86)Microsoft Visual Studio2019CommunityMSBuildMicrosoftVCv160BuildCustomizationsCUDA 10.1.targets 757
解决方法
在VS 2019 工具》选项》项目和解决方案》生成并运行
中最大并行项目生成数设为 1
在VS 2019 项目-》属性-》配置属性-》常规
将Windows SDK版本设置为系统当前版本即可
封装YOLOv4编译后的DLL
- 1、进入
darknetbuilddarknetx64
目录,将pthreadGC2.dll
和pthreadVC2.dll
拷贝到项目Dll
文件夹 - 2、将编译后的YOLOv4 DLL文件拷贝到项目
Dll
文件夹 - 3、进入
darknetbuilddarknetx64cfg
目录,将yolov4.cfg
拷贝到项目Cfg
文件夹 - 4、进入
darknetbuilddarknetx64data
目录,将coco.names
拷贝到项目Data
文件夹 - 5、下载 yolov4.weights 权重文件 拷贝到
Weights
文件夹,文件245 MB 【点击下载】
项目文件
代码下载:【Github】
-
YoloWrapper
- YOLOv4封装项目-
Cfg
- 配置文件夹 -
Data
- label文件夹 -
Dll
- YOLOv4 编译后的DLL文件夹 -
Weights
- YOLOv4 权重文件夹 BboxContainer.cs
BoundingBox.cs
-
YoloWrapper.cs
- 封装主文件,调用 YOLOv4 的动态链接库
-
-
YoloWrapperConsole
- 调用封装DLL控制台程序-
Program.cs
- 控制台主程序,调用 YOLOv4 封装文件
-
代码
YOLOv4封装项目
YoloWrapper.cs
- 封装主文件,调用 YOLOv4 的动态链接库
using System;
using System.Runtime.InteropServices;
namespace YoloWrapper
{
public class YoloWrapper : IDisposable
{
private const string YoloLibraryName = @"Dllsyolo_cpp_dll.dll";
[DllImport(YoloLibraryName, EntryPoint = "init")]
private static extern int InitializeYolo(string configurationFilename, string weightsFilename, int gpu);
[DllImport(YoloLibraryName, EntryPoint = "detect_image")]
private static extern int DetectImage(string filename, ref BboxContainer container);
[DllImport(YoloLibraryName, EntryPoint = "detect_mat")]
private static extern int DetectImage(IntPtr pArray, int nSize, ref BboxContainer container);
[DllImport(YoloLibraryName, EntryPoint = "dispose")]
private static extern int DisposeYolo();
public YoloWrapper(string configurationFilename, string weightsFilename, int gpu)
{
InitializeYolo(configurationFilename, weightsFilename, gpu);
}
public void Dispose()
{
DisposeYolo();
}
public BoundingBox[] Detect(string filename)
{
var container = new BboxContainer();
var count = DetectImage(filename, ref container);
return container.candidates;
}
public BoundingBox[] Detect(byte[] imageData)
{
var container = new BboxContainer();
var size = Marshal.SizeOf(imageData[0]) * imageData.Length;
var pnt = Marshal.AllocHGlobal(size);
try
{
Marshal.Copy(imageData, 0, pnt, imageData.Length);
var count = DetectImage(pnt, imageData.Length, ref container);
if (count == -1)
{
throw new NotSupportedException($"{YoloLibraryName} has no OpenCV support");
}
}
catch (Exception exception)
{
return null;
}
finally
{
Marshal.FreeHGlobal(pnt);
}
return container.candidates;
}
}
}
BboxContainer.cs
using System.Runtime.InteropServices;
namespace YoloWrapper
{
[StructLayout(LayoutKind.Sequential)]
public struct BboxContainer
{
[MarshalAs(UnmanagedType.ByValArray, SizeConst = 1000)]
public BoundingBox[] candidates;
}
}
BoundingBox.cs
using System;
using System.Runtime.InteropServices;
namespace YoloWrapper
{
[StructLayout(LayoutKind.Sequential)]
public struct BoundingBox
{
public UInt32 x, y, w, h;
public float prob;
public UInt32 obj_id;
public UInt32 track_id;
public UInt32 frames_counter;
public float x_3d, y_3d, z_3d;
}
}
调用封装DLL控制台程序
BoundingBox.cs
using ConsoleTables;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using YoloWrapper;
namespace YoloWrapperConsole
{
class Program
{
private const string configurationFilename = @".Cfgyolov4.cfg";
private const string weightsFilename = @".Weightsyolov4.weights";
private const string namesFile = @".Datacoco.names";
private static Dictionary<int, string> _namesDic = new Dictionary<int, string>();
private static YoloWrapper.YoloWrapper _wrapper;
static void Main(string[] args)
{
Initilize();
Console.Write("ImagePath:");
string imagePath = Console.ReadLine();
var bbox = _wrapper.Detect(imagePath);
Convert(bbox);
Console.ReadKey();
}
private static void Initilize()
{
_wrapper = new YoloWrapper.YoloWrapper(configurationFilename, weightsFilename, 0);
var lines = File.ReadAllLines(namesFile);
for (var i = 0; i < lines.Length; i++)
_namesDic.Add(i, lines[i]);
}
private static void Convert(BoundingBox[] bbox)
{
Console.WriteLine("Result:");
var table = new ConsoleTable("Type", "Confidence", "X", "Y", "Width", "Height");
foreach (var item in bbox.Where(o => o.h > 0 || o.w > 0))
{
var type = _namesDic[(int)item.obj_id];
table.AddRow(type, item.prob, item.x, item.y, item.w, item.h);
}
table.Write(Format.MarkDown);
}
}
}
测试返回结果
Type | Confidence | X | Y | Width | Height |
---|---|---|---|---|---|
mouse | 0.25446844 | 1206 | 633 | 78 | 30 |
laptop | 0.5488589 | 907 | 451 | 126 | 148 |
laptop | 0.51734066 | 688 | 455 | 53 | 37 |
laptop | 0.48207012 | 980 | 423 | 113 | 99 |
person | 0.58085686 | 429 | 293 | 241 | 469 |
bottle | 0.22032459 | 796 | 481 | 43 | 48 |
bottle | 0.24873751 | 659 | 491 | 32 | 53 |
cup | 0.5715177 | 868 | 453 | 55 | 70 |
bottle | 0.29916075 | 1264 | 459 | 31 | 89 |
cup | 0.2782725 | 685 | 503 | 35 | 40 |
cup | 0.28154427 | 740 | 539 | 78 | 44 |
person | 0.94347733 | 81 | 199 | 541 | 880 |
person | 0.9496539 | 1187 | 368 | 233 | 155 |
chair | 0.22458112 | 624 | 442 | 45 | 48 |
person | 0.97528315 | 655 | 389 | 86 | 100 |
bottle | 0.9407686 | 1331 | 436 | 33 | 107 |
bottle | 0.9561032 | 1293 | 434 | 37 | 113 |
chair | 0.4784215 | 1 | 347 | 386 | 730 |
cup | 0.8945817 | 822 | 586 | 112 | 69 |
cup | 0.6422996 | 1265 | 472 | 31 | 72 |
laptop | 0.9833646 | 802 | 700 | 639 | 216 |
cup | 0.9216428 | 828 | 521 | 115 | 71 |
chair | 0.88087356 | 1124 | 416 | 111 | 70 |
diningtable | 0.3222557 | 531 | 585 | 951 | 472 |
控制台
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:C#封装YOLOv4算法进行目标检测 - Python技术站