Opencv 仿射变换倾斜

Opencv 仿射变换倾斜的完整攻略

Opencv 仿射变换倾斜是一种常见的图像处理技术,可以用于图像的倾斜、旋转、缩放等操作。本文将详细讲解Opencv 仿射变换倾斜的完整攻略,包括基本原理、使用方法和两个示例说明。

Opencv 仿射变换倾斜的基本原理

Opencv 仿射变换倾斜是一种基于仿射变换的图像处理技术,可以通过对图像进行平移、旋转、缩放操作,实现图像的变换。仿射变换的基本原理是通过对图像进行线性变换,来实现图像的变换。具体实现方法包括:

  • cv2.getAffineTransform函数:用于获取仿射变换矩阵。
  • cv2.warpAffine函数:用于对图像进行仿射变换。

Opencv 仿射变换倾斜的使用方法

Opencv库提供cv2.getAffineTransform和cv2.warpAffine函数,可以用于对图像进行仿射变换。函数的基本语法如下:

M = cv2.getAffineTransform(src, dst)
dst = cv2.warpAffine(src, M, dsize)

其中,src表示输入图像,dst表示输出图像,M表示仿射变换矩阵,dsize表示输出图像的大小。

示例说明

下面是两个Opencv 仿射变换倾斜的示例说明:

示例1:使用cv2.warpAffine函数对图像进行倾斜

import cv2
import numpy as np
from matplotlib import pyplot as plt

# 读取图像
img = cv2.imread('test.jpg')

# 倾斜图像
rows, cols = img.shape[:2]
M = np.float32([[1, 0.5, 0], [0.5, 1, 0]])
img_skewed = cv2.warpAffine(img, M, (cols, rows))

# 显示原始图像和倾斜后的图像
plt.subplot(121), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(cv2.cvtColor(img_skewed, cv2.COLOR_BGR2RGB))
plt.title('Skewed Image'), plt.xticks([]), plt.yticks([])
plt.show()

运行该代码,系统会显示原始图像和倾斜后的图像。

示例2:使用cv2.warpAffine函数对图像进行旋转

import cv2
import numpy as np
from matplotlib import pyplot as plt

# 读取图像
img = cv2.imread('test.jpg')

# 旋转图像
rows, cols = img.shape[:2]
M = cv2.getRotationMatrix2D((cols/2, rows/2), 45, 1)
img_rotated = cv2.warpAffine(img, M, (cols, rows))

# 显示原始图像和旋转后的图像
plt.subplot(121), plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(cv2.cvtColor(img_rotated, cv2.COLOR_BGR2RGB))
plt.title('Rotated Image'), plt.xticks([]), plt.yticks([])
plt.show()

运行该代码,系统会显示原始图像和旋转后的图像。

结论

Opencv 仿射变换倾斜是一种基于仿射变换的图像处理技术,可以通过对图像进行平移、旋转、缩放等操作,实现图像的变换。通过Opencv库中的cv2.getAffineTransform和cv2.warpAffine函数,可以实现对图像的仿射变换。通过本文介绍,您应该已经了解了Opencv 仿射变换倾斜的基本原理和使用方法,可以根据需要灵活使用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Opencv 仿射变换倾斜 - Python技术站

(0)
上一篇 2023年5月10日
下一篇 2023年5月10日

相关文章

  • Opencv 仿射变换放大缩小

    Opencv 仿射变换放大缩小是一种常见的图像处理技术,可以用于图像的缩放、旋转、平移等操作。本文将详细讲解Opencv 仿射变放大缩小的完整攻略,包括基本原理、使用方法和两个示例说明。 Opencv 仿射变换放大缩小的基本原理 Opencv 仿射变换放大缩小是一种基于仿射变换的图像处理技术,可以通过对图像进行平移、旋转、缩放等操作,实现图像的变换。仿射变换…

    python 2023年5月10日
    00
  • Opencv 8-连接数

    以下是关于Opencv 8-连接数的详细攻略。 Opencv 8-连接数基本原理 Opencv 8-连接数是一种常用的图像处理技术,用于在二值图像中查找连通域。具体实现方法包括: cv2.findContours 函数:用于在二值图像中查找轮廓。 8-连接数算法的基本原理是在二值图像中查找连通域时,将每个像素点作一个节点,如果两个节点相邻且都为前景像素,则它…

    python 2023年5月10日
    00
  • Opencv 最邻近插值

    OpenCV 最邻近插值 OpenCV 最邻近插值是一种用于图像处理和计算机视觉的重要工具,可以用于图像的缩放和旋转。本文将介绍OpenCV邻近插值的基本理和使用方法,并提供两个示例。 OpenCV 最邻近插值的基本原理 OpenCV 最邻近插值是一种图缩放和旋转的,它的基原理是通过在原始图像中找到最近的像素点,来计算目标图像中的像素值。最近插值的具体实现方…

    python 2023年5月10日
    00
  • Opencv 4-连接数

    以下是关于Opencv 4-连接数的详细攻略。 Opencv 4-连接数基本原理 Opencv 4-连接数是一种常用的图像处理技术,用于在二值图像中查找连通域。具体实现方法包括: cv2.findContours 函数:用于在二值图像中查找轮廓。 4-连接数基本原理是将二值图像中的像素点分为前景像素和背景像素,然后对前景像素进行连通标记,最通过查找连通域的边…

    python 2023年5月10日
    00
  • Opencv 离散余弦变换

    Opencv 离散余弦变换的完整攻略 Opencv 离散余弦变换是一种常见的图像处理技术,可以用于图像的压缩、特征提取等操作。本文将详细讲解Opencv 离散弦变换的完整攻略,包括基本原理、方法和两个示例说明。 Opencv 离散余弦变换的基本原理 Opencv 离散余弦变换是一种基于离散余弦变换的图像处理技术,通过对图像进行频域分析,现图像的压缩、特征提取…

    python 2023年5月10日
    00
  • Opencv Gabor滤波器

    以下是关于Opencv Gabor滤波器的详细攻略。 Opencv Gabor滤波器基本原理 Gabor滤波器是一种常用的图像处理技术,用于提取图像的纹理特征。Gabor滤波器的基本原理是将高斯函数和正弦函数相乘,得到具有特定方向和频率的滤波器。实现方法包括: 对图像进行Gabor滤波 对滤波后的图像进行特征提取 Gabor滤波器可以用于图像的纹理分析、目标…

    python 2023年5月10日
    00
  • Opencv 梯度直方图

    以下是关于Opencv梯度直方图的详细攻略。 Opencv梯度直方图基本原理 Opencv梯度直方图是一种常用的图像技术用于对图像进行梯度计算和直方图统计。具体实现方法包括: 对图像进行梯度计算 对梯度图像进行直方图统计 梯度直方图的基本原理是通过对图像进行梯度计算,得到梯度图像,然后对梯度图像进行直方图统计,得到梯度直方图。梯度直方图可以用于图像分类、目标…

    python 2023年5月10日
    00
  • Opencv HSV 变换

    OpenCV HSV变换 OpenCV中的HSV变换是一种常用的颜色空间变换方法,可以将RGB图像转换为HSV图像。HSV颜色空间由色(Hue)、饱和度(Saturation)和亮度(Value)三个分量组成,与RGB颜色空间相比,HSV颜色空间更符合人类视觉感知。本文将介绍HSV变换的基本原理和使用方法,并提供两个示例说明。 HSV变换的基本原理 HSV颜…

    python 2023年5月10日
    00
合作推广
合作推广
分享本页
返回顶部