正则化DropPath/drop_path用法示例(Python实现)
DropPath是一种正则化技术,用于减少神经网络的过拟合。DropPath的基本思想是在训练过程中随机删除一些神经元,从而强制网络学习更加鲁棒的特征。在本文中,我们将介绍DropPath的用法,并提供Python实现的示例。
DropPath的原理
DropPath是在Dropout的基础上发展而来的。Dropout是一种在训练过程中随机删除一些神经元的技术,从而减少过拟合。DropPath是在Dropout的基础上,将删除的神经元从所有的层中删除,而不是只删除某一层的神经元。这样可以更好地保持网络的结构,从而提高网络的鲁棒性。
DropPath的实现方式是,在每个训练迭代中,随机选择一些层,并删除这些层中的一些神经元。删除的神经元的数量是随机的,可以根据需要进行调整。在测试过程中,所有的神经元都被保留。
DropPath的用法
在PyTorch中,DropPath可以通过自定义一个DropPath层来实现。以下是一个示例:
import torch
import torch.nn as nn
class DropPath(nn.Module):
def __init__(self, p=0.5):
super(DropPath, self).__init__()
self.p = p
def forward(self, x):
if not self.training:
return x
batch_size = x.size(0)
keep_prob = 1 - self.p
random_tensor = keep_prob + torch.rand([batch_size, 1, 1, 1], dtype=x.dtype, device=x.device)
random_tensor.floor_()
output = x / keep_prob * random_tensor
return output
在这个示例中,DropPath层的构造函数接受一个参数p,表示删除神经元的概率。在前向传播过程中,如果模型处于训练模式,则随机生成一个与输入张量相同大小的张量,其中的值在[0,1]之间。如果这个值小于p,则将输入张量中的一些神经元删除。在测试模式下,DropPath层不会删除任何神经元。
示例说明
以下是两个示例说明:
示例一
在ResNet中使用DropPath:
import torch
import torch.nn as nn
from drop_path import DropPath
class ResNet(nn.Module):
def __init__(self, num_classes=10):
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.layer1 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
DropPath(p=0.5)
)
self.layer2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
DropPath(p=0.5)
)
self.layer3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
DropPath(p=0.5)
)
self.layer4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
DropPath(p=0.5)
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
在这个示例中,我们使用DropPath层来替换ResNet中的一些卷积层。在每个DropPath层中,我们将删除50%的神经元。
示例二
在DenseNet中使用DropPath:
import torch
import torch.nn as nn
from drop_path import DropPath
class DenseNet(nn.Module):
def __init__(self, num_classes=10):
super(DenseNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.denseblock1 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 32, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
DropPath(p=0.5)
)
self.transition1 = nn.Sequential(
nn.Conv2d(160, 64, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.AvgPool2d(kernel_size=2, stride=2)
)
self.denseblock2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 32, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
DropPath(p=0.5)
)
self.transition2 = nn.Sequential(
nn.Conv2d(224, 64, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.AvgPool2d(kernel_size=2, stride=2)
)
self.denseblock3 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 32, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
DropPath(p=0.5)
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(96, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.denseblock1(x)
x = torch.cat([x, self.transition1(x)], 1)
x = self.denseblock2(x)
x = torch.cat([x, self.transition2(x)], 1)
x = self.denseblock3(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
在这个示例中,我们使用DropPath层来替换DenseNet中的一些卷积层。在每个DropPath层中,我们将删除50%的神经元。
总结
DropPath是一种正则化技术,用于减少神经网络的过拟合。在PyTorch中,DropPath可以通过自定义一个DropPath层来实现。在实际应用中,我们可以根据需要选择适当的删除神经元的概率。在训练过程中,DropPath层会随机删除一些神经元,从而强制网络学习更加鲁棒的特征。在测试过程中,DropPath层不会删除任何神经元。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:正则化DropPath/drop_path用法示例(Python实现) - Python技术站