在caffe中,网络的结构由prototxt文件中给出,由一些列的Layer(层)组成,常用的层如:数据加载层、卷积操作层、pooling层、非线性变换层、内积运算层、归一化层、损失计算层等;本篇主要介绍pooling层
1. Pooling层总述
下面首先给出pooling层的结构设置的一个小例子(定义在.prototxt文件中)
layer { name: "pool1" //该层的名称 type: "Pooling" //该层的类型 bottom: "norm1" //该层的输入数据blob top: "pool1" //该层的输出数据blob // 该层的相关参数设置 pooling_param { pool: MAX //pooling类型,默认值为MAX,也可以设置为AVE,STOCHASTIC kernel_size: 3 //pooling核大小,为必设参数 stride: 2 //pooling核步长,默认值为1(即重叠),但通常设置为2; } }
注:在caffe的原始proto文件中,关于卷积层的参数PoolingParameter定义如下:
message PoolingParameter { enum PoolMethod { MAX = 0; AVE = 1; STOCHASTIC = 2; } optional PoolMethod pool = 1 [default = MAX]; // The pooling method // Pad, kernel size, and stride are all given as a single value for equal // dimensions in height and width or as Y, X pairs. optional uint32 pad = 4 [default = 0]; // The padding size (equal in Y, X) optional uint32 pad_h = 9 [default = 0]; // The padding height optional uint32 pad_w = 10 [default = 0]; // The padding width optional uint32 kernel_size = 2; // The kernel size (square) optional uint32 kernel_h = 5; // The kernel height optional uint32 kernel_w = 6; // The kernel width optional uint32 stride = 3 [default = 1]; // The stride (equal in Y, X) optional uint32 stride_h = 7; // The stride height optional uint32 stride_w = 8; // The stride width enum Engine { DEFAULT = 0; CAFFE = 1; CUDNN = 2; } optional Engine engine = 11 [default = DEFAULT]; // If global_pooling then it will pool over the size of the bottom by doing // kernel_h = bottom->height and kernel_w = bottom->width optional bool global_pooling = 12 [default = false]; }
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:caffe之(二)pooling层 - Python技术站