数据处理
数据可以从传送门下载。
这些数据包括了18个国家的名字,我们的任务是根据这些数据训练模型,使得模型可以判断出名字是哪个国家的。
一开始,我们需要对名字进行一些处理,因为不同国家的文字可能会有一些区别。
在这里最好先了解一下Unicode:可以看看:Unicode的文本处理二三事
import os import glob import unicodedata all_letters = string.ascii_letters + " .,;'" # string.ascii_letters的作用是生成所有的英文字母 n_letters = len(all_letters) def find_files(path): """ :param path:文件路径 :return: 文件列表地址 """ return glob.glob(path) # glob模块提供了一个函数用于从目录通配符搜索中生成文件列表: def unicode_to_ascii(str): """ :param str:名字 :return:返回均采用NFD编码方式的名字 """ return ''.join( c for c in unicodedata.normalize('NFD', str) # 对文字采用相同的编码方式 if unicodedata.category(c) != 'Mn' and c in all_letters ) def read_lines(files_list): """ 读取每个文件的内容 :param files_list:文件所在地址列表 :return:{国家:名字列表} """ category_lines = {} all_categories = [] for file in files_list: # os.path.splitext:分割路径,返回路径名和文件扩展名的元组 # os.path.basename:返回文件名 category = os.path.splitext(os.path.basename(file))[0] line = [unicode_to_ascii(line) for line in open(file)] all_categories.append(category) category_lines[category] = line return all_categories, category_lines # print(all_categories) # print(category_lines['Chinese'])
接下来我们要对单词进行编码,这里使用独热编码方式, 在上述代码中已经生成了all_letters的字符串,对于名字中的每个字母,我们只需令其在all_letters中所在的索引位为0即可。
这样每个名字的size就是[ len(name),1,len(all_letters) ]。
def get_index(letter): """ :param letter: 字母 :return: 字母索引 """ return all_letters.find(letter) def letter_to_tensor(letter): """ 将字母转换成张量 :param letter:字母 :return: 张量 """ tensor = torch.zeros(1, n_letters) tensor[0][get_index(letter)] = 1 return tensor.to(device) # 将tensor放到cuda上 def word_to_tensor(word): """ 将单词转换成张量 :param word: 单词 :return: 张量 """ tensor = torch.zeros(len(word), 1, n_letters) for i, letter in enumerate(word): tensor[i][0][get_index(letter)] = 1 return tensor.to(device)
模型构建
因为是入门级的学习,这里也是只使用了最简单的RNN,只包含了一个隐藏层。
这里将隐藏层的维度定为128。
class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.i2h = nn.Linear(input_size + self.hidden_size, self.hidden_size) self.i2o = nn.Linear(input_size + self.hidden_size, self.output_size) # 这里写成self.i2o = nn.Linear(self.hidden_size, self.output_size)也是可以的,forward传入的就得是hidden的值 self.softmax = nn.LogSoftmax(dim=1) # dim=1表示对第1维度的数据进行logsoftmax操作 def forward(self, input, hidden): tmp = torch.cat((input, hidden), 1) hidden = self.i2h(tmp) output = self.i2o(tmp) output = self.softmax(output) return output, hidden def init_hidden(self): # 隐藏层初始化0操作 return torch.zeros(1, self.hidden_size).to(device)
最后输出的结果是属于18个国家的概率值,下面的函数就是从中挑选出概率最大的国家。
def category_from_output(output): top_n, top_i = output.topk(1) category_i = top_i[0].item() return all_categories[category_i], category_i
模型训练
模型的训练采用随机梯度下降,每次随机选择一个数据来进行训练。下面的代码实现的功能是先随机选择一个国家,再从该国家中随机选择一个名字。
def random_choice(obj): return obj[random.randint(0, len(obj)-1)] def random_training_example(): category = random_choice(all_categories) word = random_choice(category_lines[category]) category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long).to(device) word_tensor = word_to_tensor(word) return category, word, category_tensor, word_tensor
具体的训练代码如下:
def train(): rnn = RNN(n_letters, n_hidden, n_categories).to(device) # 创建模型 loss = nn.NLLLoss() # 定义损失函数 lr = 0.005 # 学习率 epoch_num = 100000 # 迭代次数 current_loss = 0 # 累计损失 all_losses = [] # 记录损失,后续画图 for epoch in range(epoch_num): epoch_start_time = time.time() # 记录一次迭代的时间 category, word, category_tensor, word_tensor = random_training_example() # 随机选择一条训练数据 rnn.zero_grad() # 梯度清零,这和optimizer.zero_grad()是等价的 hidden = rnn.init_hidden() # 初始化隐藏层 for i in range(word_tensor.size()[0]): output, hidden = rnn(word_tensor[i].to(device), hidden.to(device)) train_loss = loss(output, category_tensor) train_loss.backward() for p in rnn.parameters(): p.data.add_(p.grad.data, alpha=-lr) current_loss += train_loss.item() if epoch % 5000 == 0: # 每迭代5000次输出信息 guess, guess_i = category_from_output(output) correct = '√' if guess == category else '×(%s)' % category print('%d %d%% %2.4f sec(s) %.4f %s / %s %s' % (epoch, epoch / epoch_num * 100, time.time() - epoch_start_time, train_loss.item(), word, guess, correct)) if (epoch+1) % 1000 == 0: # 每迭代1000次,记录下该1000次的平均损失 all_losses.append(current_loss / 1000) current_loss = 0 plt.figure() # 画出损失变化图 plt.plot(all_losses) plt.show()
最终的损失变化图为:
完整代码
import string import os import glob import unicodedata import torch import torch.nn as nn import random import time import matplotlib.pyplot as plt import matplotlib.ticker as ticker device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") all_letters = string.ascii_letters + " .,;'" # string.ascii_letters的作用是生成所有的英文字母 n_letters = len(all_letters) n_hidden = 128 n_categories = 18 class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.i2h = nn.Linear(input_size + self.hidden_size, self.hidden_size) self.i2o = nn.Linear(input_size + self.hidden_size, self.output_size) # 这里写成self.i2o = nn.Linear(self.hidden_size, self.output_size)也是可以的,forward传入的就得是hidden的值 self.softmax = nn.LogSoftmax(dim=1) # dim=1表示对第1维度的数据进行logsoftmax操作 def forward(self, input, hidden): tmp = torch.cat((input, hidden), 1) hidden = self.i2h(tmp) output = self.i2o(tmp) output = self.softmax(output) return output, hidden def init_hidden(self): # 隐藏层初始化0操作 return torch.zeros(1, self.hidden_size).to(device) def find_files(path): """ :param path:文件路径 :return: 文件列表地址 """ return glob.glob(path) # glob模块提供了一个函数用于从目录通配符搜索中生成文件列表: def unicode_to_ascii(str): """ :param str:名字 :return:返回均采用NFD编码方式的名字 """ return ''.join( c for c in unicodedata.normalize('NFD', str) # 对文字采用相同的编码方式 if unicodedata.category(c) != 'Mn' and c in all_letters ) def read_lines(files_list): """ 读取每个文件的内容 :param files_list:文件所在地址列表 :return:{国家:名字列表} """ category_lines = {} all_categories = [] for file in files_list: # os.path.splitext:分割路径,返回路径名和文件扩展名的元组 # os.path.basename:返回文件名 category = os.path.splitext(os.path.basename(file))[0] line = [unicode_to_ascii(line) for line in open(file)] all_categories.append(category) category_lines[category] = line return all_categories, category_lines # print(all_categories) # print(category_lines['Chinese']) def get_index(letter): """ :param letter: 字母 :return: 字母索引 """ return all_letters.find(letter) def letter_to_tensor(letter): """ 将字母转换成张量 :param letter:字母 :return: 张量 """ tensor = torch.zeros(1, n_letters) tensor[0][get_index(letter)] = 1 return tensor.to(device) # 将tensor放到cuda上 def word_to_tensor(word): """ 将单词转换成张量 :param word: 单词 :return: 张量 """ tensor = torch.zeros(len(word), 1, n_letters) for i, letter in enumerate(word): tensor[i][0][get_index(letter)] = 1 return tensor.to(device) def random_choice(obj): return obj[random.randint(0, len(obj)-1)] def random_training_example(): category = random_choice(all_categories) word = random_choice(category_lines[category]) category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long).to(device) word_tensor = word_to_tensor(word) return category, word, category_tensor, word_tensor def category_from_output(output): top_n, top_i = output.topk(1) category_i = top_i[0].item() return all_categories[category_i], category_i def train(): rnn = RNN(n_letters, n_hidden, n_categories).to(device) # 创建模型 loss = nn.NLLLoss() # 定义损失函数 lr = 0.005 # 学习率 epoch_num = 100000 # 迭代次数 current_loss = 0 # 累计损失 all_losses = [] # 记录损失,后续画图 for epoch in range(epoch_num): epoch_start_time = time.time() # 记录一次迭代的时间 category, word, category_tensor, word_tensor = random_training_example() # 随机选择一条训练数据 rnn.zero_grad() # 梯度清零,这和optimizer.zero_grad()是等价的 hidden = rnn.init_hidden() # 初始化隐藏层 for i in range(word_tensor.size()[0]): output, hidden = rnn(word_tensor[i].to(device), hidden.to(device)) train_loss = loss(output, category_tensor) train_loss.backward() for p in rnn.parameters(): p.data.add_(p.grad.data, alpha=-lr) current_loss += train_loss.item() if epoch % 5000 == 0: # 每迭代5000次输出信息 guess, guess_i = category_from_output(output) correct = '√' if guess == category else '×(%s)' % category print('%d %d%% %2.4f sec(s) %.4f %s / %s %s' % (epoch, epoch / epoch_num * 100, time.time() - epoch_start_time, train_loss.item(), word, guess, correct)) if (epoch+1) % 1000 == 0: # 每迭代1000次,记录下该1000次的平均损失 all_losses.append(current_loss / 1000) current_loss = 0 plt.figure() # 画出损失变化图 plt.plot(all_losses) plt.show() if __name__ == '__main__': files_list = find_files('./names/*.txt') all_categories, category_lines = read_lines(files_list) train()
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pytorch官方教程:用RNN实现字符级的分类任务 - Python技术站