PyTorch实现线性回归详细过程

PyTorch实现线性回归详细过程

在本文中,我们将详细介绍如何使用PyTorch实现线性回归。我们将提供两个示例,一个是使用随机数据,另一个是使用真实数据。

示例1:使用随机数据

以下是使用PyTorch实现线性回归的示例代码:

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# Generate random data
np.random.seed(0)
x = np.random.rand(100, 1)
y = 2 + 3 * x + np.random.rand(100, 1)

# Convert data to tensors
inputs = torch.from_numpy(x).float()
targets = torch.from_numpy(y).float()

# Define linear regression model
model = nn.Linear(1, 1)

# Define loss function
criterion = nn.MSELoss()

# Define optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# Train the model
num_epochs = 1000
for epoch in range(num_epochs):
    # Forward pass
    outputs = model(inputs)
    loss = criterion(outputs, targets)

    # Backward and optimize
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Print progress
    if (epoch+1) % 100 == 0:
        print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

# Plot the results
predicted = model(inputs).detach().numpy()
plt.plot(x, y, 'ro', label='Original data')
plt.plot(x, predicted, label='Fitted line')
plt.legend()
plt.show()

在这个示例中,我们首先生成了一些随机数据。然后,我们将数据转换为PyTorch张量,并定义一个名为model的线性回归模型。接下来,我们定义了损失函数和优化器,并使用它们训练模型。最后,我们绘制了原始数据和拟合线。

示例2:使用真实数据

以下是使用PyTorch实现线性回归的示例代码:

import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Load data
data = pd.read_csv('data.csv')
x = np.array(data['x'])
y = np.array(data['y'])

# Convert data to tensors
inputs = torch.from_numpy(x).float().view(-1, 1)
targets = torch.from_numpy(y).float().view(-1, 1)

# Define linear regression model
model = nn.Linear(1, 1)

# Define loss function
criterion = nn.MSELoss()

# Define optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# Train the model
num_epochs = 1000
for epoch in range(num_epochs):
    # Forward pass
    outputs = model(inputs)
    loss = criterion(outputs, targets)

    # Backward and optimize
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Print progress
    if (epoch+1) % 100 == 0:
        print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

# Plot the results
predicted = model(inputs).detach().numpy()
plt.plot(x, y, 'ro', label='Original data')
plt.plot(x, predicted, label='Fitted line')
plt.legend()
plt.show()

在这个示例中,我们首先加载了一个真实数据集。然后,我们将数据转换为PyTorch张量,并定义一个名为model的线性回归模型。接下来,我们定义了损失函数和优化器,并使用它们训练模型。最后,我们绘制了原始数据和拟合线。

总结

在本文中,我们详细介绍了如何使用PyTorch实现线性回归,并提供了两个例子。这些技术对于在深度学习模型中使用回归非常有用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:PyTorch实现线性回归详细过程 - Python技术站

(0)
上一篇 2023年5月16日
下一篇 2023年5月16日

相关文章

  • Pytorch实现波阻抗反演

    Pytorch实现波阻抗反演 1 引言 地震波阻抗反演是在勘探与开发期间进行储层预测的一项关键技术。地震波阻抗反演可消除子波影响,仅留下反射系数,再通过反射系数计算出能表征地层物性变化的物理参数。常用的有道积分、广义线性反演、稀疏脉冲反演、模拟退火反演等技术。 随着勘探与开发的深入,研究的地质目标已经从大套厚层砂体转向薄层砂体,而利用常规波阻抗反演方法刻画薄…

    2023年4月8日
    00
  • YoloV5_RuntimeError: CUDA out of memory. Tried to allocate 100.00 MiB (GPU 0; 2.00 GiB total capacity; 1.15 GiB already allocated; 0 bytes free; 1.19 GiB reserved in total by PyTorch)

    报错信息: RuntimeError: CUDA out of memory. Tried to allocate 100.00 MiB (GPU 0; 2.00 GiB total capacity; 1.15 GiB already allocated; 0 bytes free; 1.19 GiB reserved in total by PyTorc…

    2023年4月8日
    00
  • python pytorch numpy DNN 线性回归模型

    1、直接奉献代码,后期有入门更新,之前一直在学的是TensorFlow, import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt import numpy as np x_data = np…

    2023年4月8日
    00
  • pytorch报错:AttributeError: ‘module’ object has no attribute ‘_rebuild_tensor_v2’

    转载自: https://blog.csdn.net/qq_24305433/article/details/80844548   由于训练模型时使用的是新版本的pytorch,而加载时使用的是旧版本的pytorch 解决方法: 1、既然是pytorch版本较老,那最简单的解决方法当然是简单的升级一下pytorch就ok了。 2、国外的大神给了另一种解决方法…

    PyTorch 2023年4月8日
    00
  • pytorch 的max函数

    torch.max(input) → Tensor 返回输入tensor中所有元素的最大值 a = torch.randn(1, 3)>>0.4729 -0.2266 -0.2085 torch.max(a)>>0.4729    torch.max(input, dim, keepdim=False, out=None) ->…

    PyTorch 2023年4月6日
    00
  • Jupyter notebook中如何添加Pytorch运行环境

    在Jupyter Notebook中添加PyTorch运行环境的步骤如下: 安装Anaconda 在使用Jupyter Notebook之前,我们需要先安装Anaconda。Anaconda是一个Python发行版,包含了Python解释器、常用的Python库以及Jupyter Notebook等工具。我们可以从Anaconda官网下载适合自己操作系统的安…

    PyTorch 2023年5月15日
    00
  • Pytorch自动求解梯度

    要理解Pytorch求解梯度,首先需要理解Pytorch当中的计算图的概念,在计算图当中每一个Variable都代表的一个节点,每一个节点就可以代表一个神经元,我们只有将变量放入节点当中才可以对节点当中的变量求解梯度,假设我们有一个矩阵: 1., 2., 3. 4., 5., 6. 我们将这个矩阵(二维张量)首先在Pytorch当中初始化,并且将其放入计算图…

    PyTorch 2023年4月8日
    00
  • pytorch seq2seq模型中加入teacher_forcing机制

    在循环内加的teacher forcing机制,这种为目标确定的时候,可以这样加。 目标不确定,需要在循环外加。 decoder.py 中的修改 “”” 实现解码器 “”” import torch.nn as nn import config import torch import torch.nn.functional as F import numpy…

    PyTorch 2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部