PyTorch实现线性回归详细过程

PyTorch实现线性回归详细过程

在本文中,我们将详细介绍如何使用PyTorch实现线性回归。我们将提供两个示例,一个是使用随机数据,另一个是使用真实数据。

示例1:使用随机数据

以下是使用PyTorch实现线性回归的示例代码:

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt

# Generate random data
np.random.seed(0)
x = np.random.rand(100, 1)
y = 2 + 3 * x + np.random.rand(100, 1)

# Convert data to tensors
inputs = torch.from_numpy(x).float()
targets = torch.from_numpy(y).float()

# Define linear regression model
model = nn.Linear(1, 1)

# Define loss function
criterion = nn.MSELoss()

# Define optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# Train the model
num_epochs = 1000
for epoch in range(num_epochs):
    # Forward pass
    outputs = model(inputs)
    loss = criterion(outputs, targets)

    # Backward and optimize
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Print progress
    if (epoch+1) % 100 == 0:
        print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

# Plot the results
predicted = model(inputs).detach().numpy()
plt.plot(x, y, 'ro', label='Original data')
plt.plot(x, predicted, label='Fitted line')
plt.legend()
plt.show()

在这个示例中,我们首先生成了一些随机数据。然后,我们将数据转换为PyTorch张量,并定义一个名为model的线性回归模型。接下来,我们定义了损失函数和优化器,并使用它们训练模型。最后,我们绘制了原始数据和拟合线。

示例2:使用真实数据

以下是使用PyTorch实现线性回归的示例代码:

import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Load data
data = pd.read_csv('data.csv')
x = np.array(data['x'])
y = np.array(data['y'])

# Convert data to tensors
inputs = torch.from_numpy(x).float().view(-1, 1)
targets = torch.from_numpy(y).float().view(-1, 1)

# Define linear regression model
model = nn.Linear(1, 1)

# Define loss function
criterion = nn.MSELoss()

# Define optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

# Train the model
num_epochs = 1000
for epoch in range(num_epochs):
    # Forward pass
    outputs = model(inputs)
    loss = criterion(outputs, targets)

    # Backward and optimize
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    # Print progress
    if (epoch+1) % 100 == 0:
        print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

# Plot the results
predicted = model(inputs).detach().numpy()
plt.plot(x, y, 'ro', label='Original data')
plt.plot(x, predicted, label='Fitted line')
plt.legend()
plt.show()

在这个示例中,我们首先加载了一个真实数据集。然后,我们将数据转换为PyTorch张量,并定义一个名为model的线性回归模型。接下来,我们定义了损失函数和优化器,并使用它们训练模型。最后,我们绘制了原始数据和拟合线。

总结

在本文中,我们详细介绍了如何使用PyTorch实现线性回归,并提供了两个例子。这些技术对于在深度学习模型中使用回归非常有用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:PyTorch实现线性回归详细过程 - Python技术站

(0)
上一篇 2023年5月16日
下一篇 2023年5月16日

相关文章

  • pytorch练习

    1、使用梯度下降法拟合y = sin(x) import numpy as np import torch import torchvision import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import time import os fro…

    PyTorch 2023年4月8日
    00
  • Pytorch【直播】2019 年县域农业大脑AI挑战赛—初级准备(一)切图

    比赛地址:https://tianchi.aliyun.com/competition/entrance/231717/introduction 这次比赛给的图非常大5万x5万,在训练之前必须要进行数据的切割。通常切割后的大小为512×512,或者1024×1024. 按照512×512切完后的结果如下: 切图时需要注意的几点是: gdal的二进制安装包wh…

    2023年4月6日
    00
  • PyTorch 之 Datasets

    实现一个定制的 Dataset 类 Dataset 类是 PyTorch 图像数据集中最为重要的一个类,也是 PyTorch 中所有数据集加载类中应该继承的父类。其中,父类的两个私有成员函数必须被重载。 getitem(self, index) # 支持数据集索引的函数 len(self) # 返回数据集的大小 Datasets 的框架: class Cus…

    PyTorch 2023年4月8日
    00
  • Pytorch之Embedding与Linear的爱恨纠葛

    最近遇到的网络模型许多都已Embedding层作为第一层,但回想前几年的网络,多以Linear层作为第一层。两者有什么区别呢?   In [1]: import torch from torch.nn import Embedding from torch.nn import Linear import numpy as np   In [20]: torc…

    PyTorch 2023年4月6日
    00
  • PyTorch——(8) 正则化、动量、学习率、Dropout、BatchNorm

    @ 目录 正则化 L-1正则化实现 L-2正则化 动量 学习率衰减 当loss不在下降时的学习率衰减 固定循环的学习率衰减 Dropout Batch Norm L-1正则化实现 PyTorch没有L-1正则化,所以用下面的方法自己实现 L-2正则化 一般用L-2正则化weight_decay 表示\(\lambda\) 动量 moment参数设置上式中的\…

    2023年4月8日
    00
  • Pytorch+PyG实现GIN过程示例详解

    下面是关于“Pytorch+PyG实现GIN过程示例详解”的完整攻略。 GIN简介 GIN(Graph Isomorphism Network)是一种基于图同构的神经网络模型,它可以对任意形状的图进行分类、回归和聚类等任务。GIN模型的核心思想是将每个节点的特征向量与其邻居节点的特征向量进行聚合,然后将聚合后的特征向量作为节点的新特征向量。GIN模型可以通过…

    PyTorch 2023年5月15日
    00
  • pytorch tensor计算三通道均值方式

    以下是PyTorch计算三通道均值的两个示例说明。 示例1:计算图像三通道均值 在这个示例中,我们将使用PyTorch计算图像三通道均值。 首先,我们需要准备数据。我们将使用torchvision库来加载图像数据集。您可以使用以下代码来加载数据集: import torchvision.datasets as datasets import torchvis…

    PyTorch 2023年5月15日
    00
  • python — conda pytorch

    Linux上用anaconda安装pytorch Pytorch是一个非常优雅的深度学习框架。使用anaconda可以非常方便地安装pytorch。下面我介绍一下用anaconda安装pytorch的步骤。 1如果安装的是anaconda2,那么python3的就要在conda中创建一个名为python36的环境,并下载对应版本python3.6,然后执行如…

    PyTorch 2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部