网址:https://s3.amazonaws.com/img-datasets/mnist.npz,由于显而易见的原因,无法访问。
npz实际上是numpy提供的数组存储方式,简单的可看做是一系列npy数据的组合,利用np.load函数读取后得到一个类似字典的对象,可以通过关键字进行值查询,关键字对应的值其实就是一个npy数据。
如果用keras自带的example(from keras.datasets import mnist,在mnist.py下的load_data函数),会使用这种格式。
我自己解决方法是在国外的vps机器上下载,然后传到本地,假设保存为mnist.npz,则加载方法:
import numpy as np def load_data(path='mnist.npz'): """Loads the MNIST dataset. # Arguments path: path where to cache the dataset locally (relative to ~/.keras/datasets). # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. path = get_file(path, origin='https://s3.amazonaws.com/img-datasets/mnist.npz', file_hash='8a61469f7ea1b51cbae51d4f78837e45') """ f = np.load(path) x_train, y_train = f['x_train'], f['y_train'] x_test, y_test = f['x_test'], f['y_test'] f.close() return (x_train, y_train), (x_test, y_test) # the data, split between train and test sets (x_train, y_train), (x_test, y_test) = load_data()
原来的是:
(x_train, y_train), (x_test, y_test) = mnist.load_data()
替换下OK!
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:keras中无法下载 https://s3.amazonaws.com/img-datasets/mnist.npz 解决方法 - Python技术站