Python数据分析–Numpy常用函数介绍(7)–Numpy中矩阵和通用函数

在NumPy中,矩阵是 ndarray 的子类,与数学概念中的矩阵一样,NumPy中的矩阵也是二维的,可以使用 mat 、 matrix 以及 bmat 函数来创建矩阵。

一、创建矩阵

mat 函数创建矩阵时,若输入已为 matrix 或 ndarray 对象,则不会为它们创建副本。 因此,调用 mat() 函数和调用 matrix(data, copy=False) 等价。

1) 在创建矩阵的专用字符串中,矩阵的行与行之间用分号隔开,行内的元素之间用空格隔开。使用如下的字符串调用 mat 函数创建矩阵:

import numpy as np

A = np.mat('1 2 3; 4 5 6; 7 8 9')
print("Creation from string:", A)

运行结果:

Creation from string: 
[[1 2 3]
 [4 5 6]
 [7 8 9]]

2)用T属性获取转置矩阵

print("transpose A:", A.T)  # 用T属性获取转置矩阵

3)用I属性获取逆矩阵

print("Inverse A:", A.I)  # 用I属性获取逆矩阵

4)用NumPy数组进行创建矩阵

B = np.mat(np.arange(9).reshape(3, 3))
print("Creation from array:", B)#使用NumPy数组进行创建

上述运行结果:

Creation from string: 
[[1 2 3] [4 5 6] [7 8 9]] transpose A:
[[
1 4 7] [2 5 8] [3 6 9]] Inverse A:
[[
3.15251974e+15 -6.30503948e+15 3.15251974e+15] [-6.30503948e+15 1.26100790e+16 -6.30503948e+15] [ 3.15251974e+15 -6.30503948e+15 3.15251974e+15]] Creation from array:
[[0 1 2] [3 4 5] [6 7 8]]

二、从已有矩阵创建新矩阵

希望利用一些已有的较小的矩阵来创建一个新的大矩阵。这可以用 bmat 函数来实现。这里的 b 表示“分块”, bmat 即分块矩阵(block matrix)。

1)先创建一个3*3的单位矩阵:

C = np.eye(3)
print("C:",C)

运行结果:

C: 
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]

2)创建一个与C同型的矩阵,乘以2

D = 2 * C
print ("D:",D)

运行结果:

D: 
[[2. 0. 0.] [0. 2. 0.] [0. 0. 2.]]

3)使用字符串创建复合矩阵:

字符串的格式与 mat 函数中一致,只是在这里你可以用矩阵变量名代替数字:

print("Compound matrixn", np.bmat("C D;C D"))

运行结果:

Compound matrix:
 [[1. 0. 0. 2. 0. 0.]
 [0. 1. 0. 0. 2. 0.]
 [0. 0. 1. 0. 0. 2.]
 [1. 0. 0. 2. 0. 0.]
 [0. 1. 0. 0. 2. 0.]
 [0. 0. 1. 0. 0. 2.]]

三、通用函数

通用函数的输入是一组标量,输出也是一组标量,它们通常可以对应于基本数学运算,如加、减、乘、除等。

1、使用NumPy中的 frompyfunc 函数,通过一个Python函数来创建通用函数,步骤如下:

1)定义一个回答某个问题的Python函数

2)用 zeros_like 函数创建一个和 a 形状相同,并且元素全部为0的数组 result

3)将刚生成的数组中的所有元素设置其值为42

2、在 add 上调用通用函数的方法

通用函数并非真正的函数,而是能够表示函数的对象。通用函数有四个方法,不过这些方法只对输入两个参数、输出一个参数的ufunc对象有效,例如 add 函数。

其他不符合条件的ufunc对象调用这些方法时将抛出 ValueError 异常。因此只能在二元通用函数上调用这些方法。以下将逐一介绍这4个方法:

 reduce()、accumulate()、 reduceat()、outer()

1) 沿着指定的轴,在连续的数组元素之间递归调用通用函数,即可得到输入数组的规约(reduce)计算结果。

对于 add 函数,其对数组的reduce计算结果等价于对数组元素求和。调用reduce 方法:

a = np.arange(9)
print("Reduce:", np.add.reduce(a)) #调用add函数的reduce方法

运行结果:

Reduce 36

2) accumulate 方法同样可以递归作用于输入数组

在 add 函数上调用 accumulate 方法,等价于直接调用 cumsum 函数。在 add 函数上调用 accumulate 方法:

print( "Accumulate", np.add.accumulate(a)) #调用add函数的accumulate方法

运行结果:

Accumulate [ 0  1  3  6 10 15 21 28 36]

3)educeat 方法需要输入一个数组以及一个索引值列表作为参数。

print ("Reduceat", np.add.reduceat(a, [0, 5, 2, 7]))

educeat 方法的作用是,在数列a中,分别计算索引间的累加,比如上述的 [0, 5, 2, 7],分别计算索引0-5,5-2(5>2,所以直接取索引为5的数据),2-7,7-(-1) 等四组序列形成的

Python数据分析--Numpy常用函数介绍(7)--Numpy中矩阵和通用函数比如,0-5就是计算A-E列中的数据,结果为10;5-2,直接取索引为5,即F的数据5;2-7,即B-G的计算结果为20;7-(-1)即索引7到最后,也即H、I的计算结果为15。

Python数据分析--Numpy常用函数介绍(7)--Numpy中矩阵和通用函数

4)outer 方法

返回一个数组,它的秩(rank)等于两个输入数组的秩的和。它会作用于两个输入数组之间存在的所有元素对。在 add 函数上调用 outer 方法:

print("Outer:n", np.add.outer(np.arange(3), a))

运行结果:

Outer:
 [[ 0  1  2  3  4  5  6  7  8]
 [ 1  2  3  4  5  6  7  8  9]
 [ 2  3  4  5  6  7  8  9 10]]

四、算术运算

在NumPy中,基本算术运算符+、-和 * 隐式关联着通用函数 add 、 subtract 和 multiply ,对NumPy数组使用这些算术运算符时,对应的通用函数将自动被调用。除法包含

的过程则较为复杂,在数组的除法运算中涉及

三个通用函数 divide 、 true_divide 和floor_division ,以及两个对应的运算符 / 和 // 。
1、除法运算:

import numpy as np

a = np.array([2, 6, 5])
b = np.array([1, 2, 3])

print("Divide:n", np.divide(a, b), np.divide(b, a))

 除了divide()函数外,还有floor_divide(),以及运算符‘/’和‘//’,(‘/’和‘//’分别和divide和floor_divide作用一样)如下代码:

import numpy as np

a = np.array([2, 6, 5])
b = np.array([1, 2, 3])

print("Divide:n", np.divide(a, b), np.divide(b, a))
print("True Divide:n", np.true_divide(a, b), np.true_divide(b, a))#回除法的浮点数结果而不作截断

print("Floor Divide:n", np.floor_divide(a, b), np.floor_divide(b, a))  #返回整数结果
c = 3.14*b
print("Floor Divide2:n", np.floor_divide(c, b), np.floor_divide(b, c)) #返回整数结果

print( "/ operator:n", a/b, b/a)  # "/"运算符相当于调用 divide 函数

print( "// operator:n", a//b, b//a) #运算符//对应于floor_divide 函数
print( "// operator2:n", c//b, b//c) 

运行结果:

Divide:
 [2.         3.         1.66666667] [0.5        0.33333333 0.6       ]
True Divide:
 [2.         3.         1.66666667] [0.5        0.33333333 0.6       ]
Floor Divide:
 [2 3 1] [0 0 0]
Floor Divide2:
 [3. 3. 3.] [0. 0. 0.]
/ operator:
 [2.         3.         1.66666667] [0.5        0.33333333 0.6       ]
// operator:
 [2 3 1] [0 0 0]
// operator2:
 [3. 3. 3.] [0. 0. 0.]

 2、模运算

计算模数或者余数,可以使用NumPy中的 mod 、 remainder 和 fmod 函数。当然,也可以使用 % 运算符。这些函数的主要差异在于处理负数的方式。

a = np.arange(-4, 4)
print('a:',a)
print ("Remainder", np.remainder(a, 2)) # remainder 函数逐个返回两个数组中元素相除后的余数
print ("Mod", np.mod(a, 2))  # mod 函数与 remainder 函数的功能完全一致
print ("% operator", a % 2)  # % 操作符仅仅是 remainder 函数的简写

print ("Fmod", np.fmod(a, 2))# fmod 函数处理负数的方式与 remainder 、 mod 和 % 不同

运行结果:

a: [-4 -3 -2 -1  0  1  2  3]
Remainder [0 1 0 1 0 1 0 1]
Mod [0 1 0 1 0 1 0 1]
% operator [0 1 0 1 0 1 0 1]
Fmod [ 0 -1  0 -1  0  1  0  1]

实际代码运行如下:Python数据分析--Numpy常用函数介绍(7)--Numpy中矩阵和通用函数

 

 

 

 

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python数据分析–Numpy常用函数介绍(7)–Numpy中矩阵和通用函数 - Python技术站

(0)
上一篇 2023年4月2日 下午5:31
下一篇 2023年4月2日

相关文章

  • python入门基础(10)–类的创建、使用和继承

    在面向对象编程中,先编写表示现实世界中的事物和情景的类,并基于这些类来创建对象。基于类创建对象时,每个对象都自动具备类的通用行为,同时可根据需要赋予每个对象独特的个性,在实例中存储特定信息及操作根据类来创建对象被称为实例化类,也可以用来扩展既有类的功能,让相似的类能够高效地共享代码 一、创建和使用类、实例 编写一个学生的类,含有名字、年龄、年级、家乡等信息,…

    2023年4月2日
    00
  • python入门基础(9)–函数及模块

    函数是带名字的代码块,要执行函数定义的特定任务,可调用该函数。 需要在程序中多次执行同一项任务时,你无需反复编写完成该任务的代码,而只需调用执行该任务的函数,通过使用函数,程序的编写、阅读、测试和修复都将更容易。主程序文件的组织更为有序 一、如何定义一个函数 使用关键字 def 来定义一个函数。 def greeting_user(): print(“Hel…

    2023年4月2日
    00
  • Python数据分析–Numpy常用函数介绍(9)– 与线性代数有关的模块linalg

    numpy.linalg 模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。一、计算逆矩阵 线性代数中,矩阵A与其逆矩阵A ^(-1)相乘后会得到一个单位矩阵I。该定义可以写为A *A ^(-1) =1。numpy.linalg 模块中的 inv 函数可以计算逆矩阵。 1) 用 mat 函数创建示例矩阵 impor…

    2023年4月2日
    00
  • Python数据分析–Numpy常用函数介绍(6)–Numpy中与股票成交量有关的计算

            成交量(volume)是投资中一个非常重要的变量,它是指在某一时段内具体的交易数,可以在分时图中绘制,包括日线图、周线图、月线图甚至是5分钟、30分钟、60分钟图中绘制。   股票市场成交量的变化反映了资金进出市场的情况,成交量是判断市场走势的重要指标。一般情况下,成交量大且价格上涨的股票,趋势向好。成交量持续低迷时,一般出现在熊市或股票整理…

    2023年4月2日
    00
  • python入门基础(1)—安装

      说明:0基础,那就先练习python语言基础知识,等基础知识牢固了,再对各开发平台分别进行介绍。这里只介绍两个简单而又容易搭建开发平台Anaconda和pycharm   Anaconda是一个开源的Python发行版本,包括Conda、Python以及一堆工具包,比如:numpy、pandas等等180多个科学包及其依赖项,因后期涉及数据处理及深度学习…

    2023年4月2日
    00
  • python入门基础(5)–数值列表、切片及元组

    列表也非常适合存储一组数字,尤其是大数据处理,处理的几乎都是由数字(如气温、距离、人口数量、经济等)组成的集合。 Python提供很多工具,在数据可视化中,可高效地处理数字列表。 一、数值列表    range() 让你能够轻松地生成一系列的数字 for value in range(1,6):    print(value)# 显示结果为1,2,3,4,5…

    2023年4月2日
    00
  • python数据可视化-matplotlib入门(5)-饼图和堆叠图

    饼图常用于统计学模块,画饼图用到的方法为:pie( ) 一、pie()函数用来绘制饼图 pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=0, radius=1, c…

    2023年4月2日
    00
  • python数据可视化-matplotlib入门(2)-利用随机函数生成变化图形

    综合前述的类、函数、matplotlib等,完成一个随机移动的过程(注意要确定移动的次数,比如10万次),每次行走都完全是随机的,没有明确的方向,结果是由一系列随机决策确定的,最后显示出每次移动的位置的图表。 思考: 1)每次走动多少个像素,由随机函数决定,每次移动方向也随机确定。由随机方向和随机像素共同移动位置大小和方向。 2)保证将每次移动的位置保存在列…

    2023年4月2日
    00
合作推广
合作推广
分享本页
返回顶部