Python演化计算基准函数详解
简介
演化计算是一种基于生物学演化理论的计算方法,主要包括遗传算法、进化策略和遗传编程等。在演化计算中,评价函数(或叫目标函数)非常重要,是进行优化、选择、进化等过程中的核心。因此,编写高效的评价函数是演化计算的关键之一。
本文将介绍Python中演化计算的基准函数,帮助读者编写更高效的评价函数。
基准函数
一、适应度函数
适应度函数(fitness function)评价个体的适应度,是遗传算法、进化策略和遗传编程等演化计算方法中最基础、最核心的函数。适应度函数的主要目的是将个体的表现转化为可比较的数值,并且越大表示越优。
在Python中,适应度函数可以采用以下基本形式:
def fitness_function(individual):
"""
计算个体的适应度值
:param individual: 一个个体
:return: 适应度值
"""
# 计算个体的适应度值
fitness_value = ...
return fitness_value
其中,参数individual
为要评价的个体,返回值为该个体的适应度值。可以根据具体业务场景设计适应度函数,例如:
def fitness_function(individual):
"""
计算个体的适应度值
:param individual: 一个个体,假设为一个列表
:return: 适应度值
"""
# 计算个体中奇数的个数
fitness_value = sum([1 for x in individual if x%2==1])
return fitness_value
二、交叉函数
交叉函数(crossover function)是遗传算法中的一种重要运算,其主要目的是产生新个体。交叉函数从一对父代个体中生成子代个体,通过交叉操作将两个个体的染色体进行组合,生成新的个体。
在Python中,交叉函数可以使用以下基本形式:
def crossover(parent1, parent2):
"""
交叉函数
:param parent1: 父代个体1
:param parent2: 父代个体2
:return: 子代个体1,子代个体2
"""
# 选择交叉位点
crossover_point = random.randint(0, len(parent1)-1)
# 生成新个体
child1 = parent1[:crossover_point] + parent2[crossover_point:]
child2 = parent2[:crossover_point] + parent1[crossover_point:]
return child1, child2
其中,参数parent1
和parent2
为父代个体,返回值child1
和child2
为生成的新个体。可以根据具体业务场景设计交叉函数,例如:
def crossover(parent1, parent2):
"""
交叉函数:将两个个体的列表隔一段交错合并生成新个体
:param parent1: 父代个体1
:param parent2: 父代个体2
:return: 子代个体1,子代个体2
"""
# 生成新个体
child1 = []
child2 = []
for i in range(len(parent1)):
if i % 2 == 0:
child1.append(parent1[i])
child2.append(parent2[i])
else:
child1.append(parent2[i])
child2.append(parent1[i])
return child1, child2
三、变异函数
变异函数(mutation function)是遗传算法中的另一种重要运算,其主要目的是通过改变个体的某些基因,产生新的个体。变异函数一般是在交叉后运用的。
在Python中,变异函数可以采用以下基本形式:
def mutation(individual):
"""
变异函数
:param individual: 个体
:return: 变异后的个体
"""
# 选择变异基因
mutation_gene = random.randint(0, len(individual)-1)
# 生成新个体
new_individual = individual[:]
new_individual[mutation_gene] = ...
return new_individual
其中,参数individual
为要进行变异的个体,返回值为变异后的个体。可以根据具体业务场景设计变异函数,例如:
def mutation(individual):
"""
变异函数:将个体中的最大值改为0
:param individual: 个体
:return: 变异后的个体
"""
# 找到最大值的索引
max_index = individual.index(max(individual))
# 生成新个体
new_individual = individual[:]
new_individual[max_index] = 0
return new_individual
示例说明
示例一:0-1背包问题
0-1背包问题是指在给定约束和价值下,选择最优解的问题。例如,有一个背包可以容纳一定重量的物品,并且有一系列可供选择的物品和它们的重量、价值,如何选择才能得到尽可能高的价值。
代码实现:
import random
# 物品数量
num_items = 50
# 物品重量和价值
weights = [random.randint(1, 10) for i in range(num_items)]
values = [random.randint(1, 10) for i in range(num_items)]
# 背包容量
max_weight = num_items*5
def fitness_function(individual):
"""
计算个体的适应度值
:param individual: 一个个体,假设为一个列表,其中0表示不选择物品,1表示选择物品
:return: 适应度值,背包中所选物品的总价值
"""
total_weight = sum([weights[i]*individual[i] for i in range(num_items)])
if total_weight <= max_weight:
total_value = sum([values[i]*individual[i] for i in range(num_items)])
else:
total_value = 0
return total_value
# 生成初始种群(只有0和1,表示是否选择物品)
def generate_population(pop_size):
return [[random.randint(0, 1) for j in range(num_items)] for i in range(pop_size)]
# 选择运算(轮盘赌)
def selection(population, fitness_values):
total_fitness = sum(fitness_values)
relative_fitness = [f/total_fitness for f in fitness_values]
probabilities = [sum(relative_fitness[:i+1]) for i in range(len(relative_fitness))]
selected_population = []
for i in range(len(population)):
r = random.random()
for j in range(len(probabilities)):
if r <= probabilities[j]:
selected_population.append(population[j])
break
return selected_population
# 交叉运算(单点交叉)
def crossover(parent1, parent2):
crossover_point = random.randint(0, num_items-1)
child1 = parent1[:crossover_point] + parent2[crossover_point:]
child2 = parent2[:crossover_point] + parent1[crossover_point:]
return child1, child2
# 变异运算(随机变异)
def mutation(individual):
mutation_gene = random.randint(0, num_items-1)
new_individual = individual[:]
new_individual[mutation_gene] = random.randint(0, 1)
return new_individual
# 遗传算法过程
def genetic_algorithm(pop_size, max_iter):
population = generate_population(pop_size)
fitness_values = [fitness_function(individual) for individual in population]
best_individual = population[fitness_values.index(max(fitness_values))]
for i in range(max_iter):
selected_population = selection(population, fitness_values)
crossover_population = []
for j in range(int(len(selected_population)/2)):
child1, child2 = crossover(selected_population[j*2], selected_population[j*2+1])
crossover_population += [child1, child2]
mutation_population = [mutation(individual) for individual in crossover_population]
fitness_values = [fitness_function(individual) for individual in mutation_population]
population = mutation_population
best_individual = population[fitness_values.index(max(fitness_values))]
return best_individual
print(genetic_algorithm(100, 50))
示例二:连连看游戏
连连看游戏是一种经典的益智游戏,其主要玩法是通过连线来消除屏幕上的相同图片。本例中,我们利用遗传算法来实现连连看游戏的解法。
代码实现:
import random
# 游戏大小
game_size = (8, 10)
# 图片列表(2的幂次方)
symbols = ['0', '1', '2', '3']
def fitness_function(individual):
"""
计算个体的适应度值
:param individual: 一个个体,假设为一个二维列表,每个元素表示屏幕上的一个方块(图片)
:return: 适应度值,即成功消除图片的对数
"""
# 计算可消除的图片对
pairs = []
for i in range(game_size[0]):
for j in range(game_size[1]):
if individual[i][j] != '':
for m in range(i+1, game_size[0]):
if individual[m][j] != '':
if individual[i][j] == individual[m][j]:
pairs.append((i, j, m, j, individual[i][j]))
break
for n in range(j+1, game_size[1]):
if individual[i][n] != '':
if individual[i][j] == individual[i][n]:
pairs.append((i, j, i, n, individual[i][j]))
break
# 按规则消除图片
count = 0
while pairs:
pair = pairs.pop(0)
individual[pair[0]][pair[1]] = ''
individual[pair[2]][pair[3]] = ''
for i in range(game_size[0]):
for j in range(game_size[1]):
if individual[i][j] != '':
for m in range(i+1, game_size[0]):
if individual[m][j] != '':
if individual[i][j] == individual[m][j]:
pairs.append((i, j, m, j, individual[i][j]))
break
for n in range(j+1, game_size[1]):
if individual[i][n] != '':
if individual[i][j] == individual[i][n]:
pairs.append((i, j, i, n, individual[i][j]))
break
count += 1
return count
# 生成初始种群(0表示空方块,其它为随机图片)
def generate_population(pop_size):
return [[random.choice(['']+symbols) for j in range(game_size[1])] for i in range(game_size[0]) for k in range(pop_size)]
# 选择运算(精英选择)
def selection(population, fitness_values):
elite = population[fitness_values.index(max(fitness_values))]
selected_population = [elite]
for i in range(len(population)-1):
r = random.randint(0, len(population)-1)
selected_population.append(population[r])
return selected_population
# 交叉运算(单点交叉)
def crossover(parent1, parent2):
crossover_point = random.randint(0, game_size[0]*game_size[1]-1)
child1 = parent1[:crossover_point] + parent2[crossover_point:]
child2 = parent2[:crossover_point] + parent1[crossover_point:]
return child1, child2
# 变异运算(随机变异)
def mutation(individual):
mutation_gene = random.randint(0, game_size[0]*game_size[1]-1)
new_individual = individual[:]
new_individual[mutation_gene] = random.choice(['']+symbols)
return new_individual
# 遗传算法过程
def genetic_algorithm(pop_size, max_iter):
population = generate_population(pop_size)
fitness_values = [fitness_function(individual) for individual in population]
best_individual = population[fitness_values.index(max(fitness_values))]
for i in range(max_iter):
selected_population = selection(population, fitness_values)
crossover_population = []
for j in range(int(len(selected_population)/2)):
child1, child2 = crossover(selected_population[j*2], selected_population[j*2+1])
crossover_population += [child1, child2]
mutation_population = [mutation(individual) for individual in crossover_population]
fitness_values = [fitness_function(individual) for individual in mutation_population]
population = mutation_population
best_individual = population[fitness_values.index(max(fitness_values))]
return best_individual
result = genetic_algorithm(10000, 50)
for i in range(game_size[0]):
print(result[i*game_size[1]:(i+1)*game_size[1]])
结论
以上是Python演化计算基准函数的详细讲解,希望读者能够通过本文深入掌握适应度函数、交叉函数、变异函数等基本函数的编写方法,并能应用于实际场景中。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python演化计算基准函数详解 - Python技术站