二、常用操作符和基本数学函数
大多数运算符都进行了重载操作,使我们可以快速使用 (+ - * /) 等,但是有一点不好的是使用重载操作符后就不能为每个操作命名了。
1 算术操作符:+ - * / %
tf.add(x, y, name=None) # 加法(支持 broadcasting)
tf.subtract(x, y, name=None) # 减法
tf.multiply(x, y, name=None) # 乘法
tf.divide(x, y, name=None) # 浮点除法, 返回浮点数(python3 除法)
tf.mod(x, y, name=None) # 取余
2 幂指对数操作符:^ ^2 ^0.5 e^ ln
tf.pow(x, y, name=None) # 幂次方
tf.square(x, name=None) # 平方
tf.sqrt(x, name=None) # 开根号,必须传入浮点数或复数
tf.exp(x, name=None) # 计算 e 的次方
tf.log(x, name=None) # 以 e 为底,必须传入浮点数或复数
3 取符号、负、倒数、绝对值、近似、两数中较大/小的
tf.negative(x, name=None) # 取负(y = -x).
tf.sign(x, name=None) # 返回 x 的符号
tf.reciprocal(x, name=None) # 取倒数
tf.abs(x, name=None) # 求绝对值
tf.round(x, name=None) # 四舍五入
tf.ceil(x, name=None) # 向上取整
tf.floor(x, name=None) # 向下取整
tf.rint(x, name=None) # 取最接近的整数
tf.maximum(x, y, name=None) # 返回两tensor中的最大值 (x > y ? x : y)
tf.minimum(x, y, name=None) # 返回两tensor中的最小值 (x < y ? x : y)
4 三角函数和反三角函数
tf.cos(x, name=None)
tf.sin(x, name=None)
tf.tan(x, name=None)
tf.acos(x, name=None)
tf.asin(x, name=None)
tf.atan(x, name=None)
5 其它
tf.div(x, y, name=None) # python 2.7 除法, x/y-->int or x/float(y)-->float
tf.truediv(x, y, name=None) # python 3 除法, x/y-->float
tf.floordiv(x, y, name=None) # python 3 除法, x//y-->int
tf.realdiv(x, y, name=None)
tf.truncatediv(x, y, name=None)
tf.floor_div(x, y, name=None)
tf.truncatemod(x, y, name=None)
tf.floormod(x, y, name=None)
tf.cross(x, y, name=None)
tf.add_n(inputs, name=None) # inputs: A list of Tensor objects, each with same shape and type
tf.squared_difference(x, y, name=None)
6 Tensorflow运算规则
- 相同大小 Tensor 之间的任何算术运算都会将运算应用到元素级
- 不同大小 Tensor(要求dimension 0 必须相同) 之间的运算叫做广播(broadcasting)
- Tensor 与 Scalar(0维 tensor) 间的算术运算会将那个标量值传播到各个元素
- Note: TensorFLow 在进行数学运算时,一定要求各个 Tensor 数据类型一致
7 参考论文
【1】 TensorFLow 数学运算
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:TensorFlow学习之二 - Python技术站