pandas object格式转float64格式的方法

将pandas object格式的数据转换为float64格式的方法可以使用astype()函数实现。astype()函数接收一个数据类型作为输入参数,并返回一个对应类型的数据副本。

具体示例代码如下:

import pandas as pd

# 示例数据
data = pd.DataFrame({'A': ['1', '2', '3', '4'], 'B': ['5.5', '6.6', '7.7', '8.8']})

# 输出数据类型
print(data.info())

# 将数据列A转换为float64类型
data['A'] = data['A'].astype('float64')

# 输出数据类型
print(data.info())

输出结果:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 2 columns):
 #   Column  Non-Null Count  Dtype 
---  ------  --------------  ----- 
 0   A       4 non-null      object
 1   B       4 non-null      object
dtypes: object(2)
memory usage: 192.0+ bytes
None

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 2 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   A       4 non-null      float64
 1   B       4 non-null      object 
dtypes: float64(1), object(1)
memory usage: 192.0+ bytes
None

从输出结果中可以看到,原始数据的A列和B列都是object类型,经过转换之后,A列的数据类型变成了float64类型。

另外,如果数据中存在非数字字符,也可以使用pd.to_numeric()函数或pd.to_datetime()函数将数据转换为数值或日期格式。

下面示例代码对包含非数字字符的数据进行处理:

import pandas as pd

# 示例数据
data = pd.DataFrame({'A': ['1', '2', '3', '4a'], 'B': ['5.5', '6.6', '7.7', '8.8']})

# 输出数据类型
print(data.info())

# 将数据列A转换为float64类型
data['A'] = pd.to_numeric(data['A'], errors='coerce')

# 输出数据类型
print(data.info())

输出结果:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 2 columns):
 #   Column  Non-Null Count  Dtype 
---  ------  --------------  ----- 
 0   A       4 non-null      object
 1   B       4 non-null      object
dtypes: object(2)
memory usage: 192.0+ bytes
None

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4 entries, 0 to 3
Data columns (total 2 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   A       3 non-null      float64
 1   B       4 non-null      object 
dtypes: float64(1), object(1)
memory usage: 192.0+ bytes
None

从输出结果中可以看到,原始数据的A列中包含一个非数字字符'a',在转换时可以通过设置errors参数为'coerce'来将非数字字符转换为NaN值,最终生成的数据列A仅包含3个非NaN的数值。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pandas object格式转float64格式的方法 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • 浅谈四种快速易用的Python数据可视化方法

    浅谈四种快速易用的Python数据可视化方法 数据可视化在数据分析中扮演着非常重要的角色。Python提供了多种数据可视化工具,其中比较流行的有Matplotlib、Seaborn、Plotly和Bokeh。本篇文章将介绍这四种Python数据可视化工具的基本用法。 Matplotlib Matplotlib是Python中最常用的数据可视化工具。它支持各种…

    python 2023年5月14日
    00
  • pandas分别写入excel的不同sheet方法

    我可以为您提供有关“pandas分别写入Excel的不同sheet方法”的完整攻略。下面是步骤: 步骤一:导入pandas库 在使用pandas库时,首先要导入pandas库。可以使用以下命令进行导入: import pandas as pd 步骤二:创建数据 在将数据写入Excel之前,需要先创建一些数据,这里创建了两个数据来源。 数据来源1 data1 …

    python 2023年6月13日
    00
  • Pandas实现在线文件和剪贴板数据读取详解

    Pandas是Python中非常流行的数据分析和处理库,它提供了许多方便的工具和函数来处理各种数据格式。其中包括对文件和剪贴板数据的读取。在本篇攻略中,我们将介绍如何使用Pandas来实现在线文件和剪贴板数据的读取。 在线文件数据读取 在Pandas中,我们可以通过一些函数来实现在线文件数据读取。其中最常用的是read_csv函数,它可以读取CSV格式的数据…

    python 2023年5月14日
    00
  • 如何在Pandas数据框架中把整数转换为日期时间

    将整数转换为日期时间在Pandas数据框架中非常常见,下面是具体步骤: 导入必要的库 import pandas as pd from datetime import datetime, timedelta 假设我们有一个整形数据帧df,其中“日期”列是整数形式,表示从2000年1月1日以来的天数。我们将使用以下代码将其转换为日期时间: df[‘日期’] =…

    python-answer 2023年3月27日
    00
  • Python中的pandas.lreshape()函数

    概述 Pandas是一个Python数据分析库,其中的lreshape()函数用于将宽格式(wide format)数据转换为长格式(long format)数据,可以实现字段的合并和重塑任务,适用于已有数据没有符合分析要求格式的场景。本文将详细介绍pandas.lreshape()的用法和示例。 语法 函数的语法如下所示: pandas.lreshape(…

    python-answer 2023年3月27日
    00
  • 将大的Pandas数据框分割成小的数据框列表

    要将大的Pandas数据框分割成小的数据框列表,可以使用Pandas的groupby函数和循环迭代的方式进行操作。 具体步骤如下: 1.首先导入需要使用的库和数据集 import pandas as pd import numpy as np # 导入数据集,本例使用Iris数据集 iris = pd.read_csv(‘https://archive.ic…

    python-answer 2023年3月27日
    00
  • Python Pandas数据结构简单介绍

    Python Pandas数据结构简单介绍 Pandas简介 Pandas是一个数据处理的工具,在数据分析领域非常常用,它提供了很多功能来处理和操作数据。使用Pandas,我们可以轻松地处理各种格式的数据集,例如: CSV、Excel、SQL或者JSON等,并对数据进行转换、排序、切片、重塑、合并等操作。 Pandas数据结构 Pandas提供了两种核心数据…

    python 2023年6月13日
    00
  • 以表格方式显示Pandas数据框架

    当你需要展示一个数据集的时候,将数据呈现为表格是一个不错的选择。Pandas是一个很好用的数据分析库,它能够轻松地将数据组织成数据框架,并用表格形式展现。在本文中,我将详细讲解如何以表格方式显示Pandas数据框架的完整攻略。 1. 导入Pandas库 首先要做的是在Python脚本中导入Pandas库。在导入库之前,请确保你已经安装好Pandas库,并将其…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部