""" 此代码是针对手写字体的训练:将图片按行依次输入网络中训练 RNN网络相对于LSTM网络很难收敛 """ import torch from torch import nn from torch.autograd import Variable import torchvision.datasets as dsets import torchvision.transforms as transforms import matplotlib.pyplot as plt # 超参数 EPOCH = 1 BATCH_SIZE = 64 TIME_STEP = 28 # 图片的高度 INPUT_SIZE = 28 # 图片的宽度 LR = 0.01 DOWNLOAD_MNIST = True # 训练数据集 train_data = dsets.MNIST( root=\'./mnist/\', train=True, transform=transforms.ToTensor(), download=DOWNLOAD_MNIST, ) print(train_data.train_data.size()) # (60000, 28, 28) print(train_data.train_labels.size()) # (60000) # 打印出第一张图片 plt.imshow(train_data.train_data[0].numpy(), cmap=\'gray\') plt.title(\'%i\' % train_data.train_labels[0]) plt.show() # 将训练数据集划分为多批 train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) # 测试数据集 test_data = dsets.MNIST(root=\'./mnist/\', train=False, transform=transforms.ToTensor()) test_x = Variable(test_data.test_data, volatile=True).type(torch.FloatTensor)[:2000]/255. test_y = test_data.test_labels.numpy().squeeze()[:2000] class RNN(nn.Module): def __init__(self): super(RNN, self).__init__() self.rnn = nn.LSTM( input_size=INPUT_SIZE, # 每一个时间步长需要输入的元素个数 hidden_size=64, # 隐藏层单元数 num_layers=1, # rnn层数 batch_first=True, # 通常输入数据的维度为(batch, time_step, input_size) # batch_first确保batch是第一维 ) self.out = nn.Linear(64, 10) def forward(self, x): # x shape (batch, time_step, input_size) # r_out shape (batch, time_step, output_size) # h_n shape (n_layers, batch, hidden_size) # h_c shape (n_layers, batch, hidden_size) r_out, (h_n, h_c) = self.rnn(x, None) # None代表零初始化隐层状态 # 其中r_out代表了每一个时刻对应的输出 out = self.out(r_out[:, -1, :]) # 选择最后一个步长对应的输出 return out rnn = RNN() print(rnn) optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # 优化所有网络参数 loss_func = nn.CrossEntropyLoss() # 计算损失值 # 训练和测试 for epoch in range(EPOCH): for step, (x, y) in enumerate(train_loader): b_x = Variable(x.view(-1, 28, 28)) b_y = Variable(y) output = rnn(b_x) loss = loss_func(output, b_y) optimizer.zero_grad() loss.backward() optimizer.step() if step % 50 == 0: test_output = rnn(test_x) pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze() accuracy = sum(pred_y == test_y) / float(test_y.size) print(\'Epoch: \', epoch, \'| train loss: %.4f\' % loss.data[0], \'| test accuracy: %.2f\' % accuracy) # 打印测试数据的前10个进行预测 test_output = rnn(test_x[:10].view(-1, 28, 28)) pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze() print(pred_y, \'prediction number\') print(test_y[:10], \'real number\')
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:循环神经网络进行分类 - Python技术站