RNN(Recurrent NeuralNetwork)和LSTM(Long Short Term Memory)
RNN(Recurrent NeuralNetwork)
RNN:存在随着时间的流逝,信号会不断的衰弱(梯度消失)
LSTM(Long Short Term Memory):
很好的解决梯度消失
控制信号的衰减
控制信号输出信号本身值的百分之多少
只有时间1的的信号可以被传入
只有时间4和6的信号可以被输出
练习:
循环(递归)神经网络RNN代码
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#载入数据集
mnist =input_data.read_data_sets("MNIST_data/",one_hot=True)
#输入层
# 输入图片是28*28
n_inputs = 28 #输入一行,一行有28个数据
max_time = 28 #一共28行
lstm_size = 100 #隐层单元
n_classes = 10 # 10个分类
batch_size = 50 #每批次50个样本
n_batch =mnist.train.num_examples // batch_size #计算一共有多少个批次
#这里的none表示第一个维度可以是任意的长度
x =tf.placeholder(tf.float32,[None,784])
#正确的标签
y =tf.placeholder(tf.float32,[None,10])
#初始化权值
weights = tf.Variable(tf.truncated_normal([lstm_size, n_classes], stddev=0.1))
#初始化偏置值
biases =tf.Variable(tf.constant(0.1, shape=[n_classes]))
#定义RNN网络
def RNN(X,weights,biases):
# inputs=[batch_size, max_time, n_inputs]
inputs = tf.reshape(X,[-1,max_time,n_inputs])
#定义LSTM基本CELL
#lstm_cell =tf.contrib.rnn.core_rnn_cell.BasicLSTMCell(lstm_size)
lstm_cell =tf.contrib.rnn.core_rnn_cell.BasicLSTMCell(lstm_size)
# final_state[0]是cell state
# final_state[1]是hidden_state
outputs,final_state = tf.nn.dynamic_rnn(lstm_cell,inputs,dtype=tf.float32)
results =tf.nn.softmax(tf.matmul(final_state[1],weights)+ biases)
return results
#计算RNN的返回结果
prediction= RNN(x, weights, biases)
#损失函数
cross_entropy =tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction,labels=y))
#使用AdamOptimizer进行优化
train_step =tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#结果存放在一个布尔型列表中
correct_prediction= tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy =tf.reduce_mean(tf.cast(correct_prediction,tf.float32))#把correct_prediction变为float32类型
#初始化
init =tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for epochin range(6):
for batchin range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print ("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:04-循环神经网络(RNN)和LSTM - Python技术站