PyTorch
-
pytorch学习: 构建网络模型的几种方法
利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种。 假设构建一个网络模型如下: 卷积层–》Relu层–》池化层–》全连接层–》Relu层–》全连接层 首先导入几种方法用到的包: import torch import torch.nn.functional as F from collections import Ordered…
-
pytorch: 准备、训练和测试自己的图片数据
大部分的pytorch入门教程,都是使用torchvision里面的数据进行训练和测试。如果我们是自己的图片数据,又该怎么做呢? 一、我的数据 我在学习的时候,使用的是fashion-mnist。这个数据比较小,我的电脑没有GPU,还能吃得消。关于fashion-mnist数据,可以百度,也可以 点此 了解一下,数据就像这个样子: 下载地址:https:…
-
pytorch学习:准备自己的图片数据
图片数据一般有两种情况: 1、所有图片放在一个文件夹内,另外有一个txt文件显示标签。 2、不同类别的图片放在不同的文件夹内,文件夹就是图片的类别。 针对这两种不同的情况,数据集的准备也不相同,第一种情况可以自定义一个Dataset,第二种情况直接调用torchvision.datasets.ImageFolder来处理。下面分别进行说明: 一、所有图片放在…
-
强化学习 单臂摆(CartPole) (DQN, Reinforce, DDPG, PPO)Pytorch
单臂摆是强化学习的一个经典模型,本文采用了4种不同的算法来解决这个问题,使用Pytorch实现。 DQN: 参考: 算法思想: https://mofanpy.com/tutorials/machine-learning/torch/DQN/ 算法实现 https://pytorch.org/tutorials/intermediate/reinforcem…
-
opencv 调用 pytorch训练的resnet模型
使用OpenCV的DNN模块调用pytorch训练的分类模型,这里记录一下中间的流程,主要分为模型训练,模型转换和OpenCV调用三步。 一、训练二分类模型 准备二分类数据,直接使用torchvision.models中的resnet18网络,主要编写的地方是自定义数据类中的__getitem__,和网络最后一层。 __getitem__ 将同类数据放在不同…
-
[PyTorch] rnn,lstm,gru中输入输出维度
本文中的RNN泛指LSTM,GRU等等CNN中和RNN中batchSize的默认位置是不同的。 CNN中:batchsize的位置是position 0. RNN中:batchsize的位置是position 1. 在RNN中输入数据格式: 对于最简单的RNN,我们可以使用两种方式来调用,torch.nn.RNNCell(),它只接受序列中的单步输入,必须显…
-
Pytorch_第二篇_Pytorch tensors 张量基础用法和常用操作
Introduce Pytorch的Tensors可以理解成Numpy中的数组ndarrays(0维张量为标量,一维张量为向量,二维向量为矩阵,三维以上张量统称为多维张量),但是Tensors 支持GPU并行计算,这是其最大的一个优点。 本文首先介绍tensor的基础用法,主要tensor的创建方式以及tensor的常用操作。 以下均为初学者笔记。 tens…
-
Pytorch_第三篇_Pytorch Autograd (自动求导机制)
Introduce Pytorch Autograd库 (自动求导机制) 是训练神经网络时,反向误差传播(BP)算法的核心。 本文通过logistic回归模型来介绍Pytorch的自动求导机制。首先,本文介绍了tensor与求导相关的属性。其次,通过logistic回归模型来帮助理解BP算法中的前向传播以及反向传播中的导数计算。 以下均为初学者笔记。 Ten…
-
Pytorch-时间序列预测
1.问题描述 已知[k,k+n)时刻的正弦函数,预测[k+t,k+n+t)时刻的正弦曲线。因为每个时刻曲线上的点是一个值,即feature_len=1,如果给出50个时刻的点,即seq_len=50,如果只提供一条曲线供输入,即batch=1。输入的shape=[seq_len, batch, feature_len] = [50, 1, 1]。 2.代码实…
-
Pytorch学习笔记12—- Pytorch的LSTM的理解及入门小案例
1.LSTM模型参数说明 class torch.nn.LSTM(*args, **kwargs) 参数列表 input_size:x的特征维度 hidden_size:隐藏层的特征维度 num_layers:lstm隐层的层数,默认为1 bias:False则bih=0和bhh=0. 默认为True batch_first:True则输入输出的数据格式为 …