人工智能
-
【笔记】PyTorch快速入门:基础部分合集
一天时间快速上手PyTorch PyTorch快速入门 Tensors Tensors贯穿PyTorch始终 和多维数组很相似,一个特点是可以硬件加速 Tensors的初始化 有很多方式 直接给值 data = [[1,2],[3,4]] x_data = torch.tensor(data) 从NumPy数组转来 np_arr = np.array(dat…
-
PyTorch全连接ReLU网络
PyTorch全连接ReLU网络 1.PyTorch的核心是两个主要特征: 一个n维张量,类似于numpy,但可以在GPU上运行 搭建和训练神经网络时的自动微分/求导机制 本文将使用全连接的ReLU网络作为运行示例。该网络将有一个单一的隐藏层,并将使用梯度下降训练,通过最小化网络输出和真正结果的欧几里得距离,来拟合随机生成的数据。 2.张量 2.1 热身: …
-
从零搭建Pytorch模型教程(三)搭建Transformer网络
前言 本文介绍了Transformer的基本流程,分块的两种实现方式,Position Emebdding的几种实现方式,Encoder的实现方式,最后分类的两种方式,以及最重要的数据格式的介绍。 本文来自公众号CV技术指南的技术总结系列 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结、最新技术跟踪、经典论文解读、CV招聘信息。 在讲如何…
-
深度学习训练过程中的学习率衰减策略及pytorch实现
学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛。 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现。 1. StepLR 按固定的训练epoch数进行学习率衰减。 举例说明: # lr = 0.05 if epoch < 30 # lr = 0.005 if 30 <= epoch <…
-
【深度学习 01】线性回归+PyTorch实现
1. 线性回归 1.1 线性模型 当输入包含d个特征,预测结果表示为: 记x为样本的特征向量,w为权重向量,上式可表示为: 对于含有n个样本的数据集,可用X来表示n个样本的特征集合,其中行代表样本,列代表特征,那么预测值可用矩阵乘法表示为: 给定训练数据特征X和对应的已知标签y,线性回归的⽬标是…
-
Ubuntu下安装pytorch(GPU版)
我这里主要参考了:https://blog.csdn.net/yimingsilence/article/details/79631567 并根据自己在安装中遇到的情况做了一些改动。 先说明一下我的Ubuntu和GPU版本: Ubuntu 16.04 GPU:GEFORCE GTX 1060 1. 查看显卡型号 使用命令:lspci | grep -…
-
Pyinstaller打包Pytorch框架所遇到的问题
目录 前言 基本流程 一、安装Pyinstaller 和 测试Hello World 二、打包整个项目,在本机上调试生成exe 三、在新电脑上测试 参考资料 前言 第一次尝试用Pyinstaller打包Pytorch,碰见了很多问题,耗费了许多时间!想把这个过程中碰到的问题与解决方法记录一下,方便后来者。 基本流程 使用Pyinstaller打包流程…
-
基于pytorch实现Resnet对本地数据集的训练
本文是使用pycharm下的pytorch框架编写一个训练本地数据集的Resnet深度学习模型,其一共有两百行代码左右,分成mian.py、network.py、dataset.py、train.py文件,功能是对本地的数据集进行分类。本文介绍逻辑是总分形式,即首先对总流程进行一个概括,然后分别介绍每个流程中的实现过程(代码+流程图+文字的介绍)。 …
-
深度学习笔记(《动手学深度学习》(PyTorch版))
《动手学深度学习》(PyTorch版)书本结构 想短时间了解深度学习最基础的概念和技术,只需阅读第1章至第3章; 如果读者希望掌握现代深度学习技术,还需阅读第4章至第6章。 第7章至第10章读者可以根据兴趣选择阅读。 深度学习简介 机器学习是一门讨论各式各样的适用于不同问题的函数形式,如何使用数据来有效地获取函数参数具体值的学科。 深度学习是指机器学习中的一…
-
win10 pytorch1.4.0 安装
win10 pytorch1.4.0 安装 首先感谢各位前人的经验,我是在参考了很多经验后才装好的呢~ 下面是简化步骤: 1.安装anaconda 或者 miniconda 2.利用conda 创建虚拟环境 3.如果要装GPU版本的需要查看自己适合的版本 4.利用conda 或者 pip 命令进行 install 需要的一系列东西0 0 …